Epreuve de contrôle continu n°2 Durée 2h

Les documents, calculatrices et téléphones portables sont interdits

Exercice 1. Soit H_1 l'ensemble des matrices de type $\begin{pmatrix} x & x \\ -x & -x \end{pmatrix}$ où $x \in \mathbb{R}$, et soit H_2 l'ensemble des matrices de type $\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ où $x \in \mathbb{R}$. Bien justifier les réponses!

- (1) H_1 ou H_2 sont-ils des sous-anneaux de l'anneau de matrices $\mathcal{M}_2(\mathbb{R})$?
- (2) H_1 muni de la somme et du produit de matrices usuels est-il un anneau?
- (3) H_2 muni de la somme et du produit de matrices usuels est-il un anneau?
- (4) On considère l'application $\varphi : \mathbb{R} \to H_2$ définie par $\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$. L'application φ est-elle un isomorphisme d'anneaux?

Exercice 2. Posons $A = \mathbb{Z}[j] = \{a + jb \mid a, b \in \mathbb{Z}\}$ où $j = \exp(\frac{2i\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Rappelons que $j^3 = 1$ et $1 + j + j^2 = 0$.

- (1) Montrer que A est un sous-anneau de l'anneau $\mathbb C.$
- (2) Posons $N(z) = |z|^2$ pour tout $z \in \mathbb{C}$. Rappelons que |z| désigne le module du nombre complexe z et que $|z|^2 = z\overline{z}$ où \overline{z} est le conjugué de z. De plus, N(zz') = N(z)N(z') pour tous $z, z' \in \mathbb{C}$.
 - (a) Montrer que : $\forall z \in A, N(z) \in \mathbb{N}$.
 - (b) Montrer que : $\forall z \in A, N(z) = 1 \iff z \in U(A)$.
- (3) Soit $a, b \in \mathbb{Z}$. Montrer que si N(a + bj) = 1, alors $ab \ge 0$
- (4) Décrire l'ensemble U(A) des unités de A et déterminer l'ordre de ses éléments. (Indication : on pourra écrire $N(a+bj)=(a-b)^2+ab$.)
- (5) On admet que l'anneau A est principal.
 - (a) Soit $z \in A$. Montrer que si N(z) est un nombre premier alors z est un élément irréductible de A.
 - (b) Parmi les éléments 2 + j, 2 + 3j, 3 + 8j, lesquels sont irréductibles dans A?

Exercice 3. Soit (A, +, .) un anneau commutatif, I et J deux idéaux de A. On définit le quotient de l'idéal I par l'idéal J de la manière suivante :

$$(I:J) = \{x \in A \mid xJ \subset I\}.$$

- (1) Montrer que (I:J) est un idéal de A contenant I.
- (2) On se place dans le cas où $A = \mathbb{Z}$. Déterminer $(18\mathbb{Z} : 3\mathbb{Z})$, $(18\mathbb{Z} : 6\mathbb{Z})$. De manière générale, déterminer (I : J) lorsque I et J sont deux idéaux de \mathbb{Z} .

Exercice 4. Soit (A, +, .) un anneau fini intègre. Pour tout $a \in A$ on considère l'application $\varphi_a : A \to A$ définie par $\varphi_a(x) = a.x$

- (1) Montrer que pour tout élément non nul a de A, φ_a est un automorphisme du groupe (A, +).
- (2) En déduire que A est un corps.

Barême indicatif des 4 exercices : 5 + 7 + 6 + 2