Convolution operators supporting hypercyclic algebras

Fernando Costa Jr. (joint work with F. Bayart and D. Papathanasiou)

Séminaire d'analyse fonctionnelle de Lille

11/06/2021

Table of contents

Introduction
Linear Dynamics
Hypercyclicity
Hypercyclic algebras

Bayart and Matheron's method
Hypercyclic algebra for D

Convolution operators
Chronological development of the results
Some properties
Main result
Applications

Open problems

Linear Dynamics

- Its a branch of Functional Analysis that studies the behavior of the iterates of linear operators on infinite dimensional topological vector spaces.

Linear Dynamics

- Its a branch of Functional Analysis that studies the behavior of the iterates of linear operators on infinite dimensional topological vector spaces.
- The underlying space we generally work with is an F-space, often a Fréchet space or even a Banach space.

Linear Dynamics

- Its a branch of Functional Analysis that studies the behavior of the iterates of linear operators on infinite dimensional topological vector spaces.
- The underlying space we generally work with is an F-space, often a Fréchet space or even a Banach space.
- Definition. A Fréchet space is a vector space X endowed with a separating increasing sequence $\left(\|\cdot\|_{n}\right)_{n \geq 0}$ of seminorms which is complete in the metric given by

$$
d(x, y)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \min \left(1,\|x-y\|_{n}\right)
$$

Linear Dynamics

- In this presentation we are specially interested on the space

$$
H(\mathbb{C})=\{f: \mathbb{C} \rightarrow \mathbb{C}: f \text { is holomorphic }\}
$$

which is naturally a Fréchet space endowed with the seminorms

$$
\|f\|_{n}=\sup _{|z| \leq n}|f(z)|
$$

Linear Dynamics

- In this presentation we are specially interested on the space

$$
H(\mathbb{C})=\{f: \mathbb{C} \rightarrow \mathbb{C}: f \text { is holomorphic }\}
$$

which is naturally a Fréchet space endowed with the seminorms

$$
\|f\|_{n}=\sup _{|z| \leq n}|f(z)|
$$

- A very important linear operator defined on this space is that of complex derivation:

$$
\begin{aligned}
D: H(\mathbb{C}) & \rightarrow H(\mathbb{C}) \\
f & \mapsto f^{\prime}
\end{aligned}
$$

Hypercyclicity

- Hypercyclicity is one of the main ingredients of chaos.

Hypercyclicity

- Hypercyclicity is one of the main ingredients of chaos.
- We say that $T: X \rightarrow X$ is hypercyclic if there exists $x \in X$, called hypercyclic vector for T, such that its orbit $\operatorname{orb}(x ; T):=\left\{T^{n}(x): n \geq 0\right\}$ is dense in X.

Hypercyclicity

- Hypercyclicity is one of the main ingredients of chaos.
- We say that $T: X \rightarrow X$ is hypercyclic if there exists $x \in X$, called hypercyclic vector for T, such that its orbit $\operatorname{orb}(x ; T):=\left\{T^{n}(x): n \geq 0\right\}$ is dense in X.
- Definition. We say that an operator $T: X \rightarrow X$ is topologically transitive if, for all couple of non-empty open sets (U, V) of X, there is $u \in U$ and $N \in \mathbb{N}$ such that $T^{N}(u) \in V$.

Hypercyclicity

Theorem (Birkhoff, 1922 [8])
For all X separable: Topological transitivity \Rightarrow hypercyclicity.

Hypercyclicity

Theorem (Birkhoff, 1922 [8])
For all X separable: Topological transitivity \Rightarrow hypercyclicity.
Proof.
Let $\left(V_{k}\right)$ be a basis of open sets of X.

Hypercyclicity

Theorem (Birkhoff, 1922 [8])
For all X separable: Topological transitivity \Rightarrow hypercyclicity.
Proof.
Let $\left(V_{k}\right)$ be a basis of open sets of X. By the definition of topological transitivity, each set

$$
\bigcup_{n} T^{-n}\left(V_{k}\right)
$$

is open and dense in X.

Hypercyclicity

Theorem (Birkhoff, 1922 [8])
For all X separable: Topological transitivity \Rightarrow hypercyclicity.
Proof.
Let $\left(V_{k}\right)$ be a basis of open sets of X. By the definition of topological transitivity, each set

$$
\bigcup_{n} T^{-n}\left(V_{k}\right)
$$

is open and dense in X. By the Baire category theorem,

$$
\bigcap_{k} \bigcup_{n} T^{-n}\left(V_{k}\right) \neq \varnothing
$$

Hypercyclicity

Theorem (Birkhoff, 1922 [8])
For all X separable: Topological transitivity \Rightarrow hypercyclicity.
Proof.
Let $\left(V_{k}\right)$ be a basis of open sets of X. By the definition of topological transitivity, each set

$$
\bigcup_{n} T^{-n}\left(V_{k}\right)
$$

is open and dense in X. By the Baire category theorem,

$$
\bigcap_{k} \bigcup_{n} T^{-n}\left(V_{k}\right) \neq \varnothing \text {. }
$$

Any vector in this set is hypercyclic for T.

Hypercyclicity

Example (MacLane, 1952 [9])
The operator $D: f \mapsto f^{\prime}$ is hypercyclic on $H(\mathbb{C})$.

Hypercyclicity

Example (MacLane, 1952 [9])

The operator $D: f \mapsto f^{\prime}$ is hypercyclic on $H(\mathbb{C})$.
Proof.
Given U, V open and non-empty in $H(\mathbb{C})$, we fix polynomials $A \in U$ and $B \in V$,

Hypercyclicity

Example (MacLane, 1952 [9])

The operator $D: f \mapsto f^{\prime}$ is hypercyclic on $H(\mathbb{C})$.
Proof.
Given U, V open and non-empty in $H(\mathbb{C})$, we fix polynomials $A \in U$ and $B \in V$, say $A=\sum_{i=0}^{p} a_{i} z^{i}$ and $B=\sum_{j=0}^{q} b_{j} z^{j}$.

Hypercyclicity

Example (MacLane, 1952 [9])

The operator $D: f \mapsto f^{\prime}$ is hypercyclic on $H(\mathbb{C})$.
Proof.
Given U, V open and non-empty in $H(\mathbb{C})$, we fix polynomials $A \in U$ and $B \in V$, say $A=\sum_{i=0}^{p} a_{i} z^{i}$ and $B=\sum_{j=0}^{q} b_{j} z^{j}$. Define the candidate

$$
u=
$$

Hypercyclic algebras

- Definition. We call a Fréchet algebra every Fréchet space X on which it is defined a product $\cdot: X \times X \rightarrow X$ satisfying, for all $x, y \in X$ and all $q \geq 0$,

$$
\|x \cdot y\|_{q} \leq\|x\|_{q} \times\|y\|_{q} .
$$

Hypercyclic algebras

- Definition. We call a Fréchet algebra every Fréchet space X on which it is defined a product $: X \times X \rightarrow X$ satisfying, for all $x, y \in X$ and all $q \geq 0$,

$$
\|x \cdot y\|_{q} \leq\|x\|_{q} \times\|y\|_{q} .
$$

- Definition. Let T be a continuous linear operator on a Fréchet algebra X. A subalgebra A of X such that $A \subset H C(T) \cup\{0\}$ is called a hypercyclic algebra for T.

Hypercyclic algebras

- Definition. We call a Fréchet algebra every Fréchet space X on which it is defined a product $: X \times X \rightarrow X$ satisfying, for all $x, y \in X$ and all $q \geq 0$,

$$
\|x \cdot y\|_{q} \leq\|x\|_{q} \times\|y\|_{q} .
$$

- Definition. Let T be a continuous linear operator on a Fréchet algebra X. A subalgebra A of X such that $A \subset H C(T) \cup\{0\}$ is called a hypercyclic algebra for T.
- First negative result by Aron, Conejero, Peris, Seoane-Sepúlveda, 2007 [1]: no translation operator $T_{a}: f(\cdot) \mapsto f(\cdot+a), a \neq 0$, acting on $H(\mathbb{C})$ has a hypercyclic algebra.

Hypercyclic algebras

- Definition. We call a Fréchet algebra every Fréchet space X on which it is defined a product $: X \times X \rightarrow X$ satisfying, for all $x, y \in X$ and all $q \geq 0$,

$$
\|x \cdot y\|_{q} \leq\|x\|_{q} \times\|y\|_{q} .
$$

- Definition. Let T be a continuous linear operator on a Fréchet algebra X. A subalgebra A of X such that $A \subset H C(T) \cup\{0\}$ is called a hypercyclic algebra for T.
- First negative result by Aron, Conejero, Peris, Seoane-Sepúlveda, 2007 [1]: no translation operator $T_{a}: f(\cdot) \mapsto f(\cdot+a), a \neq 0$, acting on $H(\mathbb{C})$ has a hypercyclic algebra.
- First positive result in 2009, independently by Shkarin [10] and by Bayart and Matheron [4]: the operator of complex derivation D on $H(\mathbb{C})$ admit a hypercyclic algebra.

Bayart and Matheron's method

It is based on a "Baire argument": they've obtained a transitivity-like property for hypercyclic algebras.

Bayart and Matheron's method

It is based on a "Baire argument": they've obtained a transitivity-like property for hypercyclic algebras.

Idea: $u_{\alpha}=\alpha_{m_{0}} u^{m_{0}}+\cdots+\alpha_{m} u^{m}+\cdots+\alpha_{m_{1}} u^{m_{1}}$

Bayart and Matheron's method

It is based on a "Baire argument": they've obtained a transitivity-like property for hypercyclic algebras.

Idea: $u_{\alpha}=\alpha_{m_{0}} u^{m_{0}}+\cdots+\alpha_{m} u^{m}+\cdots+\alpha_{m_{1}} u^{m_{1}}$

Theorem

Let T be a continuous linear operator on the separable Fréchet algebra X. Suppose that, for all $1 \leq m_{0} \leq m_{1}$ and all $U, V, W \subset X$ open and non-empty, with $0 \in W$, one can choose $m \in \llbracket m_{0}, m_{1} \rrbracket$ and find $u \in U$ and $N \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
T^{N}\left(u^{m}\right) \in V \\
T^{N}\left(u^{n}\right) \in W, \quad \text { for } n=\llbracket m_{0}, m_{1} \rrbracket \backslash\{m\} .
\end{array}\right.
$$

Then T has a hypercyclic algebra.

Hypercyclic algebra for D

Theorem
$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.

Hypercyclic algebra for D

Theorem
$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$.

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power.

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{D^{N}\left(u^{m_{1}}\right) \in V\right.
$$

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{\begin{array}{l}
D^{N}\left(u^{m_{1}}\right) \in V \\
D^{N}\left(u^{n}\right) \in W \quad \text { for } n=m_{0}, \ldots, m_{1}-1
\end{array}\right.
$$

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{\begin{array}{l}
D^{N}\left(u^{m_{1}}\right) \in V \\
D^{N}\left(u^{n}\right) \in W \quad \text { for } n=m_{0}, \ldots, m_{1}-1
\end{array}\right.
$$

The idea is to fix polynomials $A \in U, B \in V$ and define the candidate u again "by blocks" as $u=A+R_{N}$, where R_{N} is a small perturbation with good properties:

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{\begin{array}{l}
D^{N}\left(u^{m_{1}}\right) \in V \\
D^{N}\left(u^{n}\right) \in W \quad \text { for } n=m_{0}, \ldots, m_{1}-1
\end{array}\right.
$$

The idea is to fix polynomials $A \in U, B \in V$ and define the candidate u again "by blocks" as $u=A+R_{N}$, where R_{N} is a small perturbation with good properties:

- R_{N} is very small;

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{\begin{array}{l}
D^{N}\left(u^{m_{1}}\right) \in V \\
D^{N}\left(u^{n}\right) \in W \quad \text { for } n=m_{0}, \ldots, m_{1}-1
\end{array}\right.
$$

The idea is to fix polynomials $A \in U, B \in V$ and define the candidate u again "by blocks" as $u=A+R_{N}$, where R_{N} is a small perturbation with good properties:

- R_{N} is very small;
- $u^{m_{1}}=\left(A+R_{N}\right)^{m_{1}}=P_{0}+R_{N}^{m_{1}}$ and $\operatorname{deg}\left(P_{0}\right)<N$;

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{\begin{array}{l}
D^{N}\left(u^{m_{1}}\right) \in V \\
D^{N}\left(u^{n}\right) \in W \quad \text { for } n=m_{0}, \ldots, m_{1}-1 .
\end{array}\right.
$$

The idea is to fix polynomials $A \in U, B \in V$ and define the candidate u again "by blocks" as $u=A+R_{N}$, where R_{N} is a small perturbation with good properties:

- R_{N} is very small;
- $u^{m_{1}}=\left(A+R_{N}\right)^{m_{1}}=P_{0}+R_{N}^{m_{1}}$ and $\operatorname{deg}\left(P_{0}\right)<N$;
- $D^{N}\left(R_{N}^{m_{1}}\right)=B \in V$;

Hypercyclic algebra for D

Theorem

$D: f \mapsto f^{\prime}$ acting on $H(\mathbb{C})$ admits a hypercyclic algebra.
Sketch of the proof.
Let $m_{0} \leq m_{1}$ and U, V, W be open and non-empty, with $0 \in W$. We choose $m=m_{1}$ as the main power. Now, our aim is to find a candidate $u \in U$ and an iterate D^{N} of D such that

$$
\left\{\begin{array}{l}
D^{N}\left(u^{m_{1}}\right) \in V \\
D^{N}\left(u^{n}\right) \in W \quad \text { for } n=m_{0}, \ldots, m_{1}-1 .
\end{array}\right.
$$

The idea is to fix polynomials $A \in U, B \in V$ and define the candidate u again "by blocks" as $u=A+R_{N}$, where R_{N} is a small perturbation with good properties:

- R_{N} is very small;
- $u^{m_{1}}=\left(A+R_{N}\right)^{m_{1}}=P_{0}+R_{N}^{m_{1}}$ and $\operatorname{deg}\left(P_{0}\right)<N$;
- $D^{N}\left(R_{N}^{m_{1}}\right)=B \in V$;
- for all $m_{0} \leq n<m_{1}, \operatorname{deg}\left(u^{n}\right)<N$.

Convolution operators

- Definition. We say that an entire function $\phi \in H(\mathbb{C})$ is of exponential type when one can find constants $A, B>0$ such that $|\phi(z)| \leq A \exp (B|z|)$.

Convolution operators

- Definition. We say that an entire function $\phi \in H(\mathbb{C})$ is of exponential type when one can find constants $A, B>0$ such that $|\phi(z)| \leq A \exp (B|z|)$.
- Definition. Each entire function of exponential type ϕ, say $\phi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, induces a convolution operator $\phi(D): H(\mathbb{C}) \rightarrow H(\mathbb{C})$ defined by $\phi(D)(f)=\sum_{n=0}^{\infty} a_{n} f^{(n)}$.

Convolution operators

- Definition. We say that an entire function $\phi \in H(\mathbb{C})$ is of exponential type when one can find constants $A, B>0$ such that $|\phi(z)| \leq A \exp (B|z|)$.
- Definition. Each entire function of exponential type ϕ, say $\phi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, induces a convolution operator $\phi(D): H(\mathbb{C}) \rightarrow H(\mathbb{C})$ defined by $\phi(D)(f)=\sum_{n=0}^{\infty} a_{n} f^{(n)}$.
- ϕ multiple of an exponential

Convolution operators

- Definition. We say that an entire function $\phi \in H(\mathbb{C})$ is of exponential type when one can find constants $A, B>0$ such that $|\phi(z)| \leq A \exp (B|z|)$.
- Definition. Each entire function of exponential type ϕ, say $\phi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, induces a convolution operator $\phi(D): H(\mathbb{C}) \rightarrow H(\mathbb{C})$ defined by $\phi(D)(f)=\sum_{n=0}^{\infty} a_{n} f^{(n)}$.
- ϕ multiple of an exponential $\Longrightarrow \phi(D)$ is just a translation

Convolution operators

- Definition. We say that an entire function $\phi \in H(\mathbb{C})$ is of exponential type when one can find constants $A, B>0$ such that $|\phi(z)| \leq A \exp (B|z|)$.
- Definition. Each entire function of exponential type ϕ, say $\phi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, induces a convolution operator $\phi(D): H(\mathbb{C}) \rightarrow H(\mathbb{C})$ defined by $\phi(D)(f)=\sum_{n=0}^{\infty} a_{n} f^{(n)}$.
- ϕ multiple of an exponential $\Longrightarrow \phi(D)$ is just a translation $\Longrightarrow \phi$ has no hypercyclic algebra.

Chronology of $\phi(D)$ admitting a hypercyclic algebra

- 2009, Shkarin [10] and Bayart and Matheron $[4] \Longrightarrow \phi(z)=z$

Chronology of $\phi(D)$ admitting a hypercyclic algebra

- 2009, Shkarin [10] and Bayart and Matheron $[4] \Longrightarrow \phi(z)=z$
- 2017, Bès, Conejero and Paparhanasiou [5] $\Longrightarrow \phi=P, P(0)=0$

Chronology of $\phi(D)$ admitting a hypercyclic algebra

- 2009, Shkarin [10] and Bayart and Matheron $[4] \Longrightarrow \phi(z)=z$
- 2017, Bès, Conejero and Paparhanasiou [5] $\Longrightarrow \phi=P, P(0)=0$
- 2018, same authors [6] $\Longrightarrow \phi$ satisfying a convexity condition

Chronology of $\phi(D)$ admitting a hypercyclic algebra

- 2009, Shkarin [10] and Bayart and Matheron $[4] \Longrightarrow \phi(z)=z$
- 2017, Bès, Conejero and Paparhanasiou [5] $\Longrightarrow \phi=P, P(0)=0$
- 2018, same authors $[6] \Longrightarrow \phi$ satisfying a convexity condition
- 2019, Bayart $[2] \Longrightarrow|\phi(0)|<1$ and $|\phi(0)|=1$ (+ conditions)

Chronology of $\phi(D)$ admitting a hypercyclic algebra

- 2009, Shkarin [10] and Bayart and Matheron $[4] \Longrightarrow \phi(z)=z$
- 2017, Bès, Conejero and Paparhanasiou [5] $\Longrightarrow \phi=P, P(0)=0$
- 2018, same authors $[6] \Longrightarrow \phi$ satisfying a convexity condition
- 2019, Bayart [2] $\Longrightarrow|\phi(0)|<1$ and $|\phi(0)|=1$ (+ conditions)
- 2020, Bès, Ernst and Prieto $\Longrightarrow|\phi(0)|=1$ (+ less conditions)

Chronology of $\phi(D)$ admitting a hypercyclic algebra

- 2009, Shkarin [10] and Bayart and Matheron $[4] \Longrightarrow \phi(z)=z$
- 2017, Bès, Conejero and Paparhanasiou [5] $\Longrightarrow \phi=P, P(0)=0$
- 2018, same authors $[6] \Longrightarrow \phi$ satisfying a convexity condition
- 2019, Bayart [2] $\Longrightarrow|\phi(0)|<1$ and $|\phi(0)|=1$ (+ conditions)
- 2020, Bès, Ernst and Prieto $\Longrightarrow|\phi(0)|=1$ (+ less conditions)
- 2021, Bayart, Papathanasiou, FCJr [3] $\Longrightarrow|\phi(0)|>1$ (+ conditions)

Some useful properties

Let ϕ be of exponential type and define, for each $\lambda \in \mathbb{C}$, the function $E(\lambda): z \mapsto \exp (\lambda z)$ acting on $H(\mathbb{C})$.

Some useful properties

Let ϕ be of exponential type and define, for each $\lambda \in \mathbb{C}$, the function $E(\lambda): z \mapsto \exp (\lambda z)$ acting on $H(\mathbb{C})$.

- $E(\lambda) E(\mu)=E(\lambda+\mu)$

Some useful properties

Let ϕ be of exponential type and define, for each $\lambda \in \mathbb{C}$, the function $E(\lambda): z \mapsto \exp (\lambda z)$ acting on $H(\mathbb{C})$.

- $E(\lambda) E(\mu)=E(\lambda+\mu)$
- Each function $E(\lambda)$ is an eigenvector of $\phi(D)$ corresponding to the eigenvalue $\phi(\lambda)$, that is, $\phi(D) E(\lambda)=\phi(\lambda) E(\lambda)$.

Some useful properties

Let ϕ be of exponential type and define, for each $\lambda \in \mathbb{C}$, the function $E(\lambda): z \mapsto \exp (\lambda z)$ acting on $H(\mathbb{C})$.

- $E(\lambda) E(\mu)=E(\lambda+\mu)$
- Each function $E(\lambda)$ is an eigenvector of $\phi(D)$ corresponding to the eigenvalue $\phi(\lambda)$, that is, $\phi(D) E(\lambda)=\phi(\lambda) E(\lambda)$.
- If $\Lambda \subset \mathbb{C}$ has an accumulation point, then $\operatorname{span}\{E(\lambda): \lambda \in \Lambda\}$ is dense in $H(\mathbb{C})$.

How's the candidate defined now?

How's the candidate defined now?

Being fixed U, V, W open and non-empty in $H(\mathbb{C})$, we use the fact that $\operatorname{span}\{E(\lambda): \lambda \in \Lambda\}$ is dense in $H(\mathbb{C})$ whenever Λ has an accumulation points in order to find $A \in U$ and $B \in V$ (not polynomials but) combinations of the form

$$
A=\sum_{l=1}^{p} a_{l} E\left(\gamma_{l}\right) \quad \text { and } \quad B=\sum_{j=1}^{q} b_{j} E\left(\lambda_{j}\right) .
$$

How's the candidate defined now?

Being fixed U, V, W open and non-empty in $H(\mathbb{C})$, we use the fact that $\operatorname{span}\{E(\lambda): \lambda \in \Lambda\}$ is dense in $H(\mathbb{C})$ whenever Λ has an accumulation points in order to find $A \in U$ and $B \in V$ (not polynomials but) combinations of the form

$$
A=\sum_{l=1}^{p} a_{l} E\left(\gamma_{l}\right) \quad \text { and } \quad B=\sum_{j=1}^{q} b_{j} E\left(\lambda_{j}\right)
$$

The candidate is then defined in the form

$$
u=\sum_{l=1}^{p} a_{l} E\left(\gamma_{l}\right)+\sum_{j=1}^{q} c_{j} E\left(z_{j}\right)
$$

where we need to find $c_{j}, z_{j}, j=1, \ldots, q$ that allow us to distinguish the main parcel in the main power from all the other terms.

How's the candidate defined now?

If we consider the main power of this candidate, we find something like

$$
u^{n}=\sum_{d=0}^{n} \sum_{\substack{\mathbf{l} \in I_{p}^{n-d} \\ \mathbf{j} \in I_{q}^{d}}} \alpha(\mathbf{I}, \mathbf{j}, d, n) \mathrm{a}_{1} c_{j} E\left(\gamma_{l_{1}}+\cdots+\gamma_{l_{n-d}}+z_{j_{1}}+\cdots+z_{j_{d}}\right) .
$$

(notation: $c_{\mathrm{j}}:=c_{j_{1}} c_{j_{2}} \cdots c_{j_{d}}$)

How's the candidate defined now?

If we consider the main power of this candidate, we find something like

$$
u^{n}=\sum_{d=0}^{n} \sum_{\substack{\mathbf{l} \in I_{p}^{n-d} \\ \mathbf{j} \in I_{q}^{d}}} \alpha(\mathbf{I}, \mathbf{j}, d, n) a_{1} c_{j} E\left(\gamma_{l_{1}}+\cdots+\gamma_{l_{n-d}}+z_{j_{1}}+\cdots+z_{j_{d}}\right) .
$$

(notation: $c_{\mathrm{j}}:=c_{j_{1}} c_{j_{2}} \cdots c_{j_{d}}$)
After applying $\phi(D)$ we get terms containing
$c_{\mathrm{j}} \phi\left(\gamma_{l_{1}}+\cdots+\gamma_{l_{n-d}}+z_{j_{1}}+\cdots+z_{j_{d}}\right) E\left(\gamma_{l_{1}}+\cdots+\gamma_{l_{n-d}}+z_{j_{1}}+\cdots+z_{j_{d}}\right)$.

In the proof we consider $\gamma_{1}, \ldots, \gamma_{p} \in B(a, \delta)$ and $z_{1}, \ldots, z_{q} \in B(b, \delta)$.

Main theorem

Theorem
Let ϕ be an entire function of exponential type satisfying the following.
(a) ϕ is not a multiple of an exponential function;
(b) for all $1 \leq m_{0} \leq m_{1}$, there exist $m \in \llbracket m_{0}, m_{1} \rrbracket$ and $a, b \in \mathbb{C}$ such that
(i) $|\phi(m b)|>1$
(ii) for all $n \in \llbracket m_{0}, m_{1} \rrbracket$ and all $d \in\{0, \ldots, n\}$ with $(n, d) \neq(m, m)$,

$$
|\phi(d b+(n-d) a)|<1
$$

Then $\phi(D)$ supports a hypercyclic algebra.

Main theorem

Theorem

Let ϕ be an entire function of exponential type satisfying the following.
(a) ϕ is not a multiple of an exponential function;
(b) for all $1 \leq m_{0} \leq m_{1}$, there exist $m \in \llbracket m_{0}, m_{1} \rrbracket$ and $a, b \in \mathbb{C}$ such that
(i) $|\phi(m b)|>1$
(ii) for all $n \in \llbracket m_{0}, m_{1} \rrbracket$ and all $d \in\{0, \ldots, n\}$ with $(n, d) \neq(m, m)$,

$$
|\phi(d b+(n-d) a)|<|\phi(m b)|^{d / m} .
$$

Then $\phi(D)$ supports a hypercyclic algebra.

Applications

Theorem (Bayart, 2019 [2])

Let ϕ be an entire function of exponential type such that $|\phi(0)|<1$. Then $\phi(D)$ has a hypercyclic algebra if and only if ϕ is not multiple of an exponential.

Applications

Theorem (Bayart, 2019 [2])

Let ϕ be an entire function of exponential type such that $|\phi(0)|<1$. Then $\phi(D)$ has a hypercyclic algebra if and only if ϕ is not multiple of an exponential.

Theorem

Let ϕ be an entire function of exponential type such that $|\phi(0)|>1$. If ϕ is not multiple of an exponential and there exists a direction w such that $|\phi(t w)| \rightarrow 0$ as $t \rightarrow+\infty$, then $\phi(D)$ has a hypercyclic algebra.

Applications

Theorem (Bayart, 2019 [2])

Let ϕ be an entire function of exponential type such that $|\phi(0)|<1$.
Then $\phi(D)$ has a hypercyclic algebra if and only if ϕ is not multiple of an exponential.

Theorem

Let ϕ be an entire function of exponential type such that $|\phi(0)|>1$. If ϕ is not multiple of an exponential and there exists a direction w such that $|\phi(t w)| \rightarrow 0$ as $t \rightarrow+\infty$, then $\phi(D)$ has a hypercyclic algebra.

Theorem
Let ϕ be an entire function of exponential type such that $|\phi(0)|<1$. If ϕ is not multiple of an exponential and there exists a direction w such that $|\phi(t w)| \leq 1$ for all $t \gg 0$, then $\phi(D)$ has a hypercyclic algebra.

Applications

Theorem (Bayart, 2019 [2])

Let ϕ be an entire function of exponential type such that $|\phi(0)|<1$.
Then $\phi(D)$ has a hypercyclic algebra if and only if ϕ is not multiple of an exponential.

Theorem

Let ϕ be an entire function of exponential type such that $|\phi(0)|>1$. If ϕ is not multiple of an exponential and there exists a direction w such that $|\phi(t w)| \rightarrow 0$ as $t \rightarrow+\infty$, then $\phi(D)$ has a hypercyclic algebra.

Theorem
Let ϕ be an entire function of exponential type such that $|\phi(0)|<1$. If ϕ is not multiple of an exponential and there exists a direction w such that $|\phi(t w)| \leq 1$ for all $t \gg 0$, then $\phi(D)$ has a hypercyclic algebra.

Theorem (Bès, Ernst, Prieto, 2020 [7])
Let ϕ be an entire function of exponential type such that $|\phi(0)|=1$. If ϕ is of subesponential growth then $\phi(D)$ has a hypercyclic algebra.

Open problems

- $\phi(z)=2+z$?

Open problems

- $\phi(z)=2+z$?
- Explore the main result more?

Open problems

- $\phi(z)=2+z$?
- Explore the main result more?
- Outside a line?

Open problems

- $\phi(z)=2+z$?
- Explore the main result more?
- Outside a line?
- Different property leading to a hypercyclic algebra?

Open problems

- $\phi(z)=2+z ?$
- Explore the main result more?
- Outside a line?
- Different property leading to a hypercyclic algebra?
- How to prove that $\phi(D)$ does not have a hypercyclic algebra?

Open problems

- $\phi(z)=2+z ?$
- Explore the main result more?
- Outside a line?
- Different property leading to a hypercyclic algebra?
- How to prove that $\phi(D)$ does not have a hypercyclic algebra? (Highly demanded!)

Open problems

- $\phi(z)=2+z$?
- Explore the main result more?
- Outside a line?
- Different property leading to a hypercyclic algebra?
- How to prove that $\phi(D)$ does not have a hypercyclic algebra? (Highly demanded!)

Theorem (Aron et al., 2007 [1])

Let p be a positive integer and let $f \in H(\mathbb{C})$. Also, let T be a non-trivial translation operator on $H(\mathbb{C})$. If a non-constant function $g \in H(\mathbb{C})$ belongs to orb $\left(f^{p}, T\right)$ then the order of each zero of g is a multiple of p.

Open problems

- $\phi(z)=2+z$?
- Explore the main result more?
- Outside a line?
- Different property leading to a hypercyclic algebra?
- How to prove that $\phi(D)$ does not have a hypercyclic algebra? (Highly demanded!)

Theorem (Aron et al., 2007 [1])

Let p be a positive integer and let $f \in H(\mathbb{C})$. Also, let T be a non-trivial translation operator on $H(\mathbb{C})$. If a non-constant function $g \in H(\mathbb{C})$ belongs to $\operatorname{orb}\left(f^{p}, T\right)$ then the order of each zero of g is a multiple of p.

Theorem (Bayart, 2019 [2])

Let $\phi \in H(\mathbb{C})$ be an entire function of exponential type which is not multiple of an exponential. Then there exists a residual set of functions $f \in H(\mathbb{C})$ such that, for all $m \geq 1, f^{m}$ is hypercyclic for $\phi(D)$.

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \leadsto \sim\left(a_{n}\right)_{n}
$$

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
\begin{aligned}
f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \sim & \left(a_{n}\right)_{n} \\
& \left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) \sim\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(c_{n}\right), c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
\begin{aligned}
& f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \sim\left(a_{n}\right)_{n} \\
&\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) \sim\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(c_{n}\right), c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \\
& D: f \mapsto f^{\prime} \sim B_{w}\left(a_{n}\right)_{n}=\left(w_{n+1} a_{n+1}\right)_{n}, w_{n}=n
\end{aligned}
$$

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
\begin{aligned}
f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} & \sim\left(a_{n}\right)_{n} \\
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) & \sim\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(c_{n}\right), c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \\
D: f \mapsto f^{\prime} & \sim B_{w}\left(a_{n}\right)_{n}=\left(w_{n+1} a_{n+1}\right)_{n}, w_{n}=n \\
\lambda D, \lambda>0 & \sim B_{w(\lambda)}, w_{n}(\lambda)=\lambda n .
\end{aligned}
$$

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
\begin{aligned}
f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} & \sim\left(a_{n}\right)_{n} \\
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) & \sim\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(c_{n}\right), c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \\
D: f \mapsto f^{\prime} & \sim B_{w}\left(a_{n}\right)_{n}=\left(w_{n+1} a_{n+1}\right)_{n}, w_{n}=n \\
\lambda D, \lambda>0 & \sim B_{w(\lambda)}, w_{n}(\lambda)=\lambda n .
\end{aligned}
$$

Theorem

- For all $\lambda>0, \lambda D$ admits an upper frequently hypercyclic algebra.

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
\begin{aligned}
f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} & \sim\left(a_{n}\right)_{n} \\
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) & \sim\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(c_{n}\right), c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \\
D: f \mapsto f^{\prime} & \sim B_{w}\left(a_{n}\right)_{n}=\left(w_{n+1} a_{n+1}\right)_{n}, w_{n}=n \\
\lambda D, \lambda>0 & \sim B_{w(\lambda)}, w_{n}(\lambda)=\lambda n .
\end{aligned}
$$

Theorem

- For all $\lambda>0, \lambda D$ admits an upper frequently hypercyclic algebra.
- For all $0<\lambda<\mu,(\lambda D, \mu D)$ admits a disjoint hypercyclic algebra.

Open problems

Let us consider $H(\mathbb{C})$ as a Fréchet sequence space:

$$
\begin{aligned}
f \in H(\mathbb{C}), f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} & \sim\left(a_{n}\right)_{n} \\
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) & \sim\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(c_{n}\right), c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \\
D: f \mapsto f^{\prime} & \sim B_{w}\left(a_{n}\right)_{n}=\left(w_{n+1} a_{n+1}\right)_{n}, w_{n}=n \\
\lambda D, \lambda>0 & \sim B_{w(\lambda)}, w_{n}(\lambda)=\lambda n .
\end{aligned}
$$

Theorem

- For all $\lambda>0, \lambda D$ admits an upper frequently hypercyclic algebra.
- For all $0<\lambda<\mu,(\lambda D, \mu D)$ admits a disjoint hypercyclic algebra.
- The family $(\lambda D)_{\lambda>0}$ admits a common hypercyclic algebra.

Open problems

Everything is obtained by exploring the idea of defining a candidate of the form

$$
u=x+z+\varepsilon e_{\sigma}
$$

Open problems

Everything is obtained by exploring the idea of defining a candidate of the form

$$
u=x+z+\varepsilon e_{\sigma}
$$

- Could we adapt the same ideas for operators of the form $\lambda I+B_{w}$?

Open problems

Everything is obtained by exploring the idea of defining a candidate of the form

$$
u=x+z+\varepsilon e_{\sigma}
$$

- Could we adapt the same ideas for operators of the form $\lambda I+B_{w}$?
- On the contrary, could we find a method to unprove the existence of hypercyclic algebras for operators of the form $\lambda I+B_{w}$?

Open problems

Theorem (Bayart, 2019 [2])
Let $\phi \in H(\mathbb{C})$ be an entire function of exponential type which is not multiple of an exponential. Suppose that, for all $\rho \in(0,1)$, there exists $w_{0} \in \mathbb{C}$ such that
(i) $\left|\phi\left(w_{0}\right)\right|>1$;
(ii) for all $r \in(0, \rho],\left|\phi\left(r w_{0}\right)\right|<1$.

Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

Open problems

Theorem (Bayart, 2019 [2])
Let $\phi \in H(\mathbb{C})$ be an entire function of exponential type which is not multiple of an exponential. Suppose that, for all $\rho \in(0,1)$, there exists $w_{0} \in \mathbb{C}$ such that
(i) $\left|\phi\left(w_{0}\right)\right|>1$;
(ii) for all $r \in(0, \rho],\left|\phi\left(r w_{0}\right)\right|<1$.

Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

Theorem (Bès, Ernst and Prieto, 2020 [7])
Let ϕ be of exponential type satisfying $|\phi(0)|=1, \phi^{\prime \prime}(0) \phi(0) \neq \phi^{\prime}(0)^{2}$ and $\phi(0) \neq 0$. Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

Open problems

Theorem (Bayart, 2019 [2])
Let $\phi \in H(\mathbb{C})$ be an entire function of exponential type which is not multiple of an exponential. Suppose that, for all $\rho \in(0,1)$, there exists $w_{0} \in \mathbb{C}$ such that
(i) $\left|\phi\left(w_{0}\right)\right|>1$;
(ii) for all $r \in(0, \rho],\left|\phi\left(r w_{0}\right)\right|<1$.

Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

Theorem (Bès, Ernst and Prieto, 2020 [7])

Let ϕ be of exponential type satisfying $|\phi(0)|=1, \phi^{\prime \prime}(0) \phi(0) \neq \phi^{\prime}(0)^{2}$ and $\phi(0) \neq 0$. Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

- Can we get a similar result for the case $|\phi(0)|>1$ and the exists a direction $w \in \mathbb{C}$ such that $|\phi(t w)| \rightarrow 0$ as $t \rightarrow+\infty$?

Open problems

Theorem (Bayart, 2019 [2])

Let $\phi \in H(\mathbb{C})$ be an entire function of exponential type which is not multiple of an exponential. Suppose that, for all $\rho \in(0,1)$, there exists $w_{0} \in \mathbb{C}$ such that
(i) $\left|\phi\left(w_{0}\right)\right|>1$;
(ii) for all $r \in(0, \rho],\left|\phi\left(r w_{0}\right)\right|<1$.

Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

Theorem (Bès, Ernst and Prieto, 2020 [7])

Let ϕ be of exponential type satisfying $|\phi(0)|=1, \phi^{\prime \prime}(0) \phi(0) \neq \phi^{\prime}(0)^{2}$ and $\phi(0) \neq 0$. Then $\phi(D)$ supports a hypercyclic algebra which is dense and is not finitely generated.

- Can we get a similar result for the case $|\phi(0)|>1$ and the exists a direction $w \in \mathbb{C}$ such that $|\phi(t w)| \rightarrow 0$ as $t \rightarrow+\infty$?
- Is the condition of the main theorem enough?

One last problem

We know that convolution operators admit upper frequent hypercyclic subspaces, so the search for upper frequent hypercyclic algebras is a natural step forward.

One last problem

We know that convolution operators admit upper frequent hypercyclic subspaces, so the search for upper frequent hypercyclic algebras is a natural step forward.

- Could we get upper frequent hypercyclic algebras for convolution operators?
A transitivity-like key result providing these algebras already exists!

References I

[1] Richard M Aron et al. "Powers of hypercyclic functions for some classical hypercyclic operators". In: Integral Equations and Operator Theory 58.4 (2007), pp. 591-596.
[2] Frédéric Bayart. "Hypercyclic algebras". In: Journal of Functional Analysis 276.11 (2019), pp. 3441-3467.
[3] Frédéric Bayart, Fernando Costa Júnior, and Dimitris Papathanasiou. "Baire theorem and hypercyclic algebras". In: Advances in Mathematics 376 (2021), p. 107419.
[4] Frédéric Bayart and Étienne Matheron. Dynamics of linear operators. 179. Cambridge university press, 2009.
[5] Juan Bès, J Alberto Conejero, and Dimitris Papathanasiou. "Convolution operators supporting hypercyclic algebras". In: Journal of Mathematical Analysis and Applications 445.2 (2017), pp. 1232-1238.
[6] Juan Bès, José Alberto Conejero, and Dimitrios Papathanasiou. "Hypercyclic algebras for convolution and composition operators". In: Journal of Functional Analysis 274.10 (2018), pp. 2884-2905.

References II

[7] Juan Bès, Romuald Ernst, and A Prieto. "Hypercyclic algebras for convolution operators of unimodular constant term". In: Journal of Mathematical Analysis and Applications 483.1 (2020), p. 123595.
[8] George D Birkhoff. "Surface transformations and their dynamical applications". In: Acta Mathematica 43.1 (1922), pp. 1-119.
[9] Gerald R MacLane. "Sequences of derivatives and normal families". In: Journal d'Analyse Mathématique 2.1 (1952), pp. 72-87.
[10] Stanislav Shkarin. "On the set of hypercyclic vectors for the differentiation operator". In: Israel Journal of Mathematics 180.1 (2010), pp. 271-283.

Merci de votre attention!

