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Linear Dynamics

I Its a branch of Functional Analysis that studies the behavior of the
iterates of linear operators on infinite dimensional topological vector
spaces.

I The underlying space we generally work with is an F -space, often a
Fréchet space or even a Banach space.

I Definition. A Fréchet space is a vector space X endowed with a
separating increasing sequence (‖ · ‖n)n≥0 of seminorms which is
complete in the metric given by

d(x , y) =
∞∑
n=0

1

2n
min(1, ‖x − y‖n).
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Linear Dynamics

I In this presentation we are specially interested on the space

H(C) = {f : C→ C : f is holomorphic},

which is naturally a Fréchet space endowed with the seminorms

‖f ‖n = sup
|z|≤n

|f (z)|.

I A very important linear operator defined on this space is that of
complex derivation:

D : H(C)→ H(C)

f 7→ f ′
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Hypercyclicity

I Hypercyclicity is one of the main ingredients of chaos.

I We say that T : X → X is hypercyclic if there exists x ∈ X , called
hypercyclic vector for T , such that its orbit
orb(x ;T ) := {T n(x) : n ≥ 0} is dense in X .

I Definition. We say that an operator T : X → X is topologically
transitive if, for all couple of non-empty open sets (U,V ) of X ,
there is u ∈ U and N ∈ N such that TN(u) ∈ V .
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Hypercyclicity

Theorem (Birkhoff, 1922 [8])
For all X separable: Topological transitivity ⇒ hypercyclicity.

Proof.
Let (Vk) be a basis of open sets of X . By the definition of topological
transitivity, each set ⋃

n

T−n(Vk)

is open and dense in X . By the Baire category theorem,⋂
k

⋃
n

T−n(Vk) 6= ∅.

Any vector in this set is hypercyclic for T .
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Hypercyclicity

Example (MacLane, 1952 [9])
The operator D : f 7→ f ′ is hypercyclic on H(C).

Proof.
Given U,V open and non-empty in H(C), we fix polynomials A ∈ U and
B ∈ V , say A =

∑p
i=0 aiz

i and B =
∑q

j=0 bjz
j . Define the candidate

u =
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Hypercyclic algebras

I Definition. We call a Fréchet algebra every Fréchet space X on
which it is defined a product · : X × X → X satisfying, for all
x , y ∈ X and all q ≥ 0,

‖x · y‖q ≤ ‖x‖q × ‖y‖q.

I Definition. Let T be a continuous linear operator on a Fréchet
algebra X . A subalgebra A of X such that A ⊂ HC (T ) ∪ {0} is
called a hypercyclic algebra for T .

I First negative result by Aron, Conejero, Peris, Seoane-Sepúlveda,
2007 [1]: no translation operator Ta : f (·) 7→ f (·+ a), a 6= 0, acting
on H(C) has a hypercyclic algebra.

I First positive result in 2009, independently by Shkarin [10] and by
Bayart and Matheron [4]: the operator of complex derivation D on
H(C) admit a hypercyclic algebra.
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2007 [1]: no translation operator Ta : f (·) 7→ f (·+ a), a 6= 0, acting
on H(C) has a hypercyclic algebra.

I First positive result in 2009, independently by Shkarin [10] and by
Bayart and Matheron [4]: the operator of complex derivation D on
H(C) admit a hypercyclic algebra.

7 / 22



Hypercyclic algebras
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Bayart and Matheron’s method

It is based on a “Baire argument”: they’ve obtained a transitivity-like
property for hypercyclic algebras.

Idea: uα = αm0u
m0 + · · ·+ αmu

m + · · ·+ αm1u
m1

Theorem
Let T be a continuous linear operator on the separable Fréchet algebra
X . Suppose that, for all 1 ≤ m0 ≤ m1 and all U,V ,W ⊂ X open and
non-empty, with 0 ∈W, one can choose m ∈ [[m0,m1]] and find u ∈ U
and N ∈ N such that{

TN(um) ∈ V

TN(un) ∈W , for n = [[m0,m1]]\{m}.

Then T has a hypercyclic algebra.
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X . Suppose that, for all 1 ≤ m0 ≤ m1 and all U,V ,W ⊂ X open and
non-empty, with 0 ∈W, one can choose m ∈ [[m0,m1]] and find u ∈ U
and N ∈ N such that{

TN(um) ∈ V

TN(un) ∈W , for n = [[m0,m1]]\{m}.

Then T has a hypercyclic algebra.

8 / 22



Hypercyclic algebra for D
Theorem
D : f 7→ f ′ acting on H(C) admits a hypercyclic algebra.

Sketch of the proof.
Let m0 ≤ m1 and U,V ,W be open and non-empty, with 0 ∈W . We
choose m = m1 as the main power. Now, our aim is to find a candidate
u ∈ U and an iterate DN of D such that{

DN(um1 ) ∈ V

DN(un) ∈W for n = m0, ...,m1 − 1.

The idea is to fix polynomials A ∈ U, B ∈ V and define the candidate u
again “by blocks” as u = A + RN , where RN is a small perturbation with
good properties:

I RN is very small;

I um1 = (A + RN)m1 = P0 + Rm1

N and deg(P0) < N;

I DN(Rm1

N ) = B ∈ V ;

I for all m0 ≤ n < m1, deg(un) < N.
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Convolution operators

I Definition. We say that an entire function φ ∈ H(C) is of
exponential type when one can find constants A,B > 0 such that
|φ(z)| ≤ A exp(B|z |).

I Definition. Each entire function of exponential type φ, say
φ(z) =

∑∞
n=0 anz

n, induces a convolution operator
φ(D) : H(C)→ H(C) defined by φ(D)(f ) =

∑∞
n=0 anf

(n).

I φ multiple of an exponential

=⇒ φ(D) is just a translation
φ multiple of an exponential =⇒ φ has no hypercyclic algebra.
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Chronology of φ(D) admitting a hypercyclic algebra

I 2009, Shkarin [10] and Bayart and Matheron [4]=⇒ φ(z) = z

I 2017, Bès, Conejero and Paparhanasiou [5] =⇒ φ = P,P(0) = 0

I 2018, same authors [6] =⇒ φ satisfying a convexity condition

I 2019, Bayart [2] =⇒ |φ(0)| < 1 and |φ(0)| = 1 (+ conditions)

I 2020, Bès, Ernst and Prieto =⇒ |φ(0)| = 1 (+ less conditions)

I 2021, Bayart, Papathanasiou, FCJr [3] =⇒ |φ(0)| > 1 (+ conditions)
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I 2020, Bès, Ernst and Prieto =⇒ |φ(0)| = 1 (+ less conditions)

I 2021, Bayart, Papathanasiou, FCJr [3] =⇒ |φ(0)| > 1 (+ conditions)
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Some useful properties

Let φ be of exponential type and define, for each λ ∈ C, the function
E (λ) : z 7→ exp(λz) acting on H(C).

I E (λ)E (µ) = E (λ+ µ)

I Each function E (λ) is an eigenvector of φ(D) corresponding to the
eigenvalue φ(λ), that is, φ(D)E (λ) = φ(λ)E (λ).

I If Λ ⊂ C has an accumulation point, then span{E (λ) : λ ∈ Λ} is
dense in H(C).
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How’s the candidate defined now?

Being fixed U,V ,W open and non-empty in H(C), we use the fact that
span{E (λ) : λ ∈ Λ} is dense in H(C) whenever Λ has an accumulation
points in order to find A ∈ U and B ∈ V (not polynomials but)
combinations of the form

A =

p∑
l=1

alE (γl) and B =

q∑
j=1

bjE (λj).

The candidate is then defined in the form

u =

p∑
l=1

alE (γl) +

q∑
j=1

cjE (zj),

where we need to find cj , zj , j = 1, ..., q that allow us to distinguish the
main parcel in the main power from all the other terms.
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How’s the candidate defined now?

If we consider the main power of this candidate, we find something like

un =
n∑

d=0

∑
l∈I n−d

p

j∈I dq

α(l, j, d , n)alcjE

(
γl1 + · · ·+ γln−d

+ zj1 + · · ·+ zjd

)
.

(notation: cj := cj1cj2 · · · cjd )

After applying φ(D) we get terms containing

cjφ

(
γl1 + · · ·+γln−d

+ zj1 + · · ·+ zjd

)
E

(
γl1 + · · ·+γln−d

+ zj1 + · · ·+ zjd

)
.

In the proof we consider γ1, ..., γp ∈ B(a, δ) and z1, ..., zq ∈ B(b, δ).
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Main theorem

Theorem
Let φ be an entire function of exponential type satisfying the following.

(a) φ is not a multiple of an exponential function;

(b) for all 1 ≤ m0 ≤ m1, there exist m ∈ [[m0,m1]] and a, b ∈ C such
that

(i) |φ(mb)| > 1
(ii) for all n ∈ [[m0,m1]] and all d ∈ {0, ..., n} with (n, d) 6= (m,m),

|φ(db + (n − d)a)| < 1.

Then φ(D) supports a hypercyclic algebra.
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Applications

Theorem (Bayart, 2019 [2])
Let φ be an entire function of exponential type such that |φ(0)| < 1.
Then φ(D) has a hypercyclic algebra if and only if φ is not multiple of an
exponential.

Theorem
Let φ be an entire function of exponential type such that |φ(0)| > 1. If φ
is not multiple of an exponential and there exists a direction w such that
|φ(tw)| → 0 as t → +∞, then φ(D) has a hypercyclic algebra.

Theorem
Let φ be an entire function of exponential type such that |φ(0)| < 1. If φ
is not multiple of an exponential and there exists a direction w such that
|φ(tw)| ≤ 1 for all t � 0, then φ(D) has a hypercyclic algebra.

Theorem (Bès, Ernst, Prieto, 2020 [7])
Let φ be an entire function of exponential type such that |φ(0)| = 1. If φ
is of subesponential growth then φ(D) has a hypercyclic algebra.
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Open problems

I φ(z) = 2 + z?

I Explore the main result more?

I Outside a line?
I Different property leading to a hypercyclic algebra?

I How to prove that φ(D) does not have a hypercyclic algebra?

(Highly demanded!)

Theorem (Aron et al., 2007 [1])
Let p be a positive integer and let f ∈ H(C). Also, let T be a non-trivial
translation operator on H(C). If a non-constant function g ∈ H(C)
belongs to orb(f p,T ) then the order of each zero of g is a multiple of p.

Theorem (Bayart, 2019 [2])
Let φ ∈ H(C) be an entire function of exponential type which is not
multiple of an exponential. Then there exists a residual set of functions
f ∈ H(C) such that, for all m ≥ 1, f m is hypercyclic for φ(D).
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Open problems

Let us consider H(C) as a Fréchet sequence space:

f ∈ H(C), f (z) =
∞∑
n=0

anz
n // (an)n( ∞∑

n=0

anz
n

)( ∞∑
n=0

bnz
n

)
// (an) · (bn) = (cn), cn =

n∑
k=0

akbn−k

D : f 7→ f ′ // Bw (an)n = (wn+1an+1)n,wn = n

λD, λ > 0 // Bw(λ),wn(λ) = λn.

Theorem

I For all λ > 0, λD admits an upper frequently hypercyclic algebra.

I For all 0 < λ < µ, (λD, µD) admits a disjoint hypercyclic algebra.

I The family (λD)λ>0 admits a common hypercyclic algebra.
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f ∈ H(C), f (z) =
∞∑
n=0

anz
n // (an)n( ∞∑

n=0

anz
n

)( ∞∑
n=0

bnz
n

)
// (an) · (bn) = (cn), cn =

n∑
k=0

akbn−k

D : f 7→ f ′ // Bw (an)n = (wn+1an+1)n,wn = n

λD, λ > 0 // Bw(λ),wn(λ) = λn.

Theorem

I For all λ > 0, λD admits an upper frequently hypercyclic algebra.

I For all 0 < λ < µ, (λD, µD) admits a disjoint hypercyclic algebra.

I The family (λD)λ>0 admits a common hypercyclic algebra.

19 / 22



Open problems

Let us consider H(C) as a Fréchet sequence space:
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Open problems

Everything is obtained by exploring the idea of defining a candidate of
the form

u = x + z + εeσ

I Could we adapt the same ideas for operators of the form λI + Bw?

I On the contrary, could we find a method to unprove the existence of
hypercyclic algebras for operators of the form λI + Bw?
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Open problems

Theorem (Bayart, 2019 [2])
Let φ ∈ H(C) be an entire function of exponential type which is not
multiple of an exponential. Suppose that, for all ρ ∈ (0, 1), there exists
w0 ∈ C such that

(i) |φ(w0)| > 1;

(ii) for all r ∈ (0, ρ], |φ(rw0)| < 1.

Then φ(D) supports a hypercyclic algebra which is dense and is not
finitely generated.

Theorem (Bès, Ernst and Prieto, 2020 [7])
Let φ be of exponential type satisfying |φ(0)| = 1, φ′′(0)φ(0) 6= φ′(0)2

and φ(0) 6= 0. Then φ(D) supports a hypercyclic algebra which is dense
and is not finitely generated.

I Can we get a similar result for the case |φ(0)| > 1 and the exists a
direction w ∈ C such that |φ(tw)| → 0 as t → +∞?

I Is the condition of the main theorem enough?
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One last problem

We know that convolution operators admit upper frequent hypercyclic
subspaces, so the search for upper frequent hypercyclic algebras is a
natural step forward.

I Could we get upper frequent hypercyclic algebras for convolution
operators?

A transitivity-like key result providing these algebras already exists!
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Journal d’Analyse Mathématique 2.1 (1952), pp. 72–87.

[10] Stanislav Shkarin. “On the set of hypercyclic vectors for the
differentiation operator”. In: Israel Journal of Mathematics 180.1 (2010),
pp. 271–283.



Merci de votre attention !
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