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Hypercyclicity and common hypercyclicity

▶ Let X be a separable Banach space and T : X → X be linear and
continuous (= operator).

We say that x ∈ X is a hypercyclic vector for T when its orbit
Orb(x, T ) := {Tnx : n ≥ 0} is dense in X. If such a vector exists we
say that T is a hypercyclic operator on X. The set of hypercyclic
vectors for an operator T is denoted by HC(T ).

▶ Let d ≥ 1, let Λ ⊂ Rd be compact and let (Tλ)λ∈Λ be a family of
operators acting on X such that the map (λ, x) 7→ Tλ(x) is
continuous (= continuous family).

We say that x ∈ X is a common hypercyclic vector for (Tλ)λ∈Λ

when x ∈ HC(Tλ) for all λ ∈ Λ. If such a vector exists we say that
(Tλ)λ∈Λ is a common hypercyclic family on X.
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▶ Gilles Godefroy and Joel Shapiro (1991), Héctor Salas (1999)

▶ Evgeny Abakumov and Julia Gordon (2003), Alfred Peris
(2000/2001)

▶ Frédéric Bayart (2004)

▶ George Costakis and Mart́ın Sambarino (2004)

▶ Simultaneity of many dynamical properties are studied since 2004

▶ Frédéric Bayart, CJr, Quentin Menet (2022)

Context: continuous families (Tλ)λ∈Λ, with Λ compact, acting on the
same space X in which there is D ⊂ X dense such that Tλ has a right
inverse Sλ : D → X, for all λ ∈ Λ.
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Very first criterion for general families of operators

Theorem (Costakis and Sambarino (2004))
Assume that, for each v ∈ D and each compact interval K inside
Λ ⊂ R, the following properties hold true, where λ, µ ∈ K.

(1) There exist κ ∈ N and a summable sequence of positive numbers
(ck)k such that
▶ ∥Tn+k

λ Sn
µ (v)∥ ≤ ck whenever n ∈ N, k ≥ κ and µ ≤ λ;

▶ ∥Tn
λ Sn+k

µ (v)∥ ≤ ck whenever n ∈ N, k ≥ κ and λ ≤ µ.

(2) Given η > 0, one can find τ > 0 such that, for all n ≥ 1,

0 ≤ µ− λ ≤ τ
n =⇒ ∥Tn

λ S
n
µ(v)− v∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.

>>> We call this the CS-Criterion. <<<
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Almost there

Theorem (Bayart, CJr, Menet (2022))
Assume that there exist α ∈ (0, 1/d), β > αd and D > 0 such that, for
each u ∈ D and each compact cube K inside Λ ⊂ Rd, the following
properties hold true, where λ, µ ∈ K.

(1) There exist C > 0, κ ∈ N such that, whenever
∥λ− µ∥∞ ≤ D kα

(n+k)α , n, k ∈ N, k ≥ κ,

∥∥Tn+k
λ Sn

µu
∥∥ ≤ C

kβ
and

∥∥Tn
λ S

n+k
µ u

∥∥ ≤ C

kβ
.

(2) Given η > 0, there is τ > 0 such that, for all n ≥ 1,

∥λ− µ∥ ≤ τ

nα
=⇒

∥∥Tn
λ S

n
µu− u

∥∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.
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Ideal d-dimensional generalization

Theorem (d-dimension CS-Criterion)
Assume that there is D > 0 such that, for each u ∈ D and each
compact cube K inside Λ ⊂ Rd, the following properties hold true,
where λ, µ ∈ K.

(1) There exist κ ∈ N and a summable sequence of positive numbers

(ck)k such that, whenever ∥λ−µ∥∞ ≤ D k1/d

(n+k)1/d
, n, k ∈ N, k ≥ κ,∥∥Tn+k

λ Sn
µu

∥∥ ≤ ck and
∥∥Tn

λ S
n+k
µ u

∥∥ ≤ ck.

(2) Given η > 0, there is τ > 0 such that, for all n ≥ 1,

∥λ− µ∥ ≤ τ

n1/d
=⇒

∥∥Tn
λ S

n
µu− u

∥∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.
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Ideal bi-dimensional CS-Criterion

Theorem (bi-dimensional CS-Criterion)
Assume that there is D > 0 such that, for each u ∈ D and each
compact square K, the following properties hold true, where λ, µ ∈ K.

(1) There exist κ ∈ N and a summable sequence of positive numbers

(ck)k such that, whenever ∥λ− µ∥∞ ≤ D
√

k
n+k , n, k ∈ N, k ≥ κ,∥∥Tn+k

λ Sn
µu

∥∥ ≤ ck and
∥∥Tn

λ S
n+k
µ u

∥∥ ≤ ck.

(2) Given η > 0, there is τ > 0 such that, for all n ≥ 1,

∥λ− µ∥ ≤ τ√
n

=⇒
∥∥Tn

λ S
n
µu− u

∥∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.
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A covering game

For proving the generalization of the CS-Criterion, we will choose the
sequence of powers (ni)i of the form ni = iN .

One can think of this as a covering game: we are given initial values
τ > 0 and N ∈ N and we have to conveniently cover our parameter set
by squares of sides τ√

N
, τ√

2N
, τ√

3N
, ... and so on.

How to organize these squares can be very tricky.
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A new approach

Let us explain the method for a simple case: τ√
N

= 1
2 . We aim to

cover a unit square by square pieces of side τ√
N
, τ√

2N
, τ√

3N
, ...
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A new approach: using pseudo-Hilbert curves

Let us explain the method for a simple case: τ√
N

= 1
2 . We aim to

cover a unit square by square pieces of side τ√
N
, τ√

2N
, τ√

3N
, ...
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A covering game: round 1

Value used:

τ√
N

=
1

2

victory!
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A covering game: round 2

Values used:

τ√
2N

>
τ√
3N

>
τ√
4N

=
1

22

victory!
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A covering game: round 3

Values used:

τ√
5N

>
τ√
6N

> · · · > τ√
16N

=
1

23

victory!
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A covering game: round 4

Values used:

τ√
17N

> · · · > τ√
64N︸ ︷︷ ︸

to make 48=3×42 pieces

=
1

24

victory!
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A covering game: round 5

Values used:

τ√
65N

> · · · > τ√
256N︸ ︷︷ ︸

to make 192=3×43 pieces

=
1

25

victory!
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How the enumeration of our covering looks like

Ordering of Λ1,Λ2, . . . ,Λ256 such that K ⊂
⋃256

i=1 Λi
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Sierpiński gasket

Obtaining the Sierpiński gasket through triangles
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Sierpiński gasket

Obtaining the Sierpiński gasket through squares
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Dimension of the gasket

Let Γ be a unitary Sierpiński gasket inside [0,+∞)2. The similarity
dimension (= Hausdorff dimension) of the gasket is dimH = log 3

log 2 .

Up to now, we knew how to state a generalization of the CS-Criterion
for all α < 1

dimH Γ = log 2
log 3 .
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Applying the new approach to the gasket

The limit case we aim to address is α = 1
log 3
log 2

= log 2
log 3 .

Once again, we are given values τ > 0, N ∈ N and we want to
construct a covering by squares of sides

τ

N
log 2
log 3

,
τ

(2N)
log 2
log 3

,
τ

(3N)
log 2
log 3

, ...

to make pieces for our covering.
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The covering game of the gasket: grouping method

Again, let us consider the simple case

τ

N
log 2
log 3

=
1

2
.
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The covering game of the gasket: round 1

Value used:

τ

(N
log 2
log 3 )

=
1

2

victory!
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The covering game of the gasket: round 2

Values used:

τ

(2N)
log 2
log 3

>
τ

(3N)
log 2
log 3

=
1

22

victory!
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The covering game of the gasket: round 3

Values used:

τ

(4N)
log 2
log 3

> · · · > τ

(9N)
log 2
log 3

=
1

23

victory!
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The covering game of the gasket: round 4

Values used:

τ

(10N)
log 2
log 3

> · · · > τ

(27N)
log 2
log 3

=
1

23

victory!
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How the enumeration of our covering looks like

Ordering of Λ1,Λ2, . . . ,Λ27 such that Γ ⊂
⋃27

i=1 Λi
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Koch snowflake

Figure : The von Koch curve forms the well known Koch snowflake. It has
4 similarities and contraction ration 1

3
. Its has Hausdorff dimension log(4)

log(3)
.

We can apply our method by making groups of 3 patches of parts.
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Minkowski sausage

Figure : The Minkowski sasusage has 8 similarities with 1
4
contraction

ration. Its Hausdorff dimension is 1.5.

We can apply our method by making groups of 7 patches of parts.
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A new concept of dimension?

Definition. Let d ≥ 1 and Λ ⊂ Rd be compact. We say that Λ has
homogeneously ordered box dimension at most γ ∈ (0, d] if there exist
r ∈ [[2,+∞[[, ρ > 0 and, for all m ≥ 1, a compact covering (Λi)i∈Im

r
of

Λ satisfying the following.

(i) For all i ∈ Imr ,

diam(Λi) ≤ ρ

(
1

r1/γ

)m

.

(ii) For all i = (i1, ..., im, im+1) ∈ Im+1
r ,

Λi1,...,im+1 ⊂ Λi1,...,im .

(iii) For all i = (i1, ..., im) ∈ Imr and all j ∈ {2, ..., r},

Λi,j−1,r ∩ Λi,j,1 ̸= ∅.

The homogeneously ordered box dimension of Λ (HBD◦ for short) is
the smallest number γ such that Λ has homogeneously ordered box
dimension at most γ. We will denote this number by dim◦

HB(Λ).
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A full generalization of the CS-criterion

Theorem (Generalized Costakis-Sambarino Criterion)
Let d ∈ N and γ > 0 and let Λ be a compact subset of Rd having
homogeneously ordered box dimension at most γ. Assume that there is
D > 0 such that, for all u ∈ D and all compact K ⊂ Λ, the following
properties hold true, where all parameters λ, µ belong to K.

(1) There exist κ ∈ N and a sequence of positive numbers (ck)k∈N

such that
∑∞

k=κ ck < ∞ and, whenever ∥λ− µ∥∞ ≤ D k1/γ

(n+k)1/γ
,

with n, k ∈ N0 and k ≥ κ, we have∥∥Tn+k
λ Sn

µu
∥∥ ≤ ck and

∥∥Tn
λ S

n+k
µ u

∥∥ ≤ ck.

(2) Given η > 0, one can find τ > 0 such that, for all n ∈ N,

∥λ− µ∥∞ ≤ τ

n1/γ
=⇒

∥∥Tn
λ S

n
µu− u

∥∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.
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Applications
Let d ≥ 1 and Γ ⊂ Rd compact. We write λ = (x1, . . . , xd) for any

λ ∈ Rd. Consider α ∈ (0, 1/d] and a family
(
Bw(x1) ×

d· · · ×Bw(xd)

)
λ∈Γ

induced by weights
(
w(x)

)
x∈R satisfying

w1(x) · · ·wd(x) ≈ exp(xnα).

Theorem
If Γ has HBO◦ at most γ ≤ d and 0 < α ≤ 1/γ, then⋂

λ∈Γ

HC
(
Bw(x1) ×

d· · · ×Bw(xd)

)
̸= ∅.

Corollary
If Γ is a β-Hölder curve and 0 < α ≤ β, then⋂

λ∈Γ

HC
(
Bw(x1) ×

d· · · ×Bw(xd)

)
̸= ∅.
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IFS, GIFS and optimal parametrizations

Construction of the Sierpiński carpet.
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IFS, GIFS and optimal parametrizations

Ordering the carpet (Rao and Zhang, 2016).
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Some open questions

•
∑

1
F (n)2 = +∞ =⇒

⋂
x,y>0 HC(Bw(x) ×Bw(y)) ̸= ∅?

• For C ⊂ R2
+ the Cantor dust with dissection ratio 1/4,⋂

(x,y)∈C

exB × eyB ̸= ∅?

• Can we, more generally, generalize our result for totally
disconnected fractals?

• Can we adapt optimally our technique to self-similar fractals with
non-uniform contraction ratio?

• For T ⊂ R2
+ the 1-dimensional Takagi curve,⋂

(x,y)∈T

exB × eyB ̸= ∅?
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