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Hypercyclicity and common hypercyclicity

> Let X be a separable Banach space and T': X — X be linear and
continuous (= operator).

We say that x € X is a hypercyclic vector for T" when its orbit
Orb(z,T) := {IT"x : n > 0} is dense in X. If such a vector exists we
say that T is a hypercyclic operator on X. The set of hypercyclic
vectors for an operator T is denoted by HC(T).

» Let d > 1, let A C R? be compact and let (T))xea be a family of
operators acting on X such that the map (A, z) — Ty (z) is
continuous (= continuous family).

We say that € X is a common hypercyclic vector for (T))xca
when x € HC(Ty) for all A € A. If such a vector exists we say that
(T\)rea is a common hypercyclic family on X.

1/32



v

Gilles Godefroy and Joel Shapiro (1991), Héctor Salas (1999)

Evgeny Abakumov and Julia Gordon (2003), Alfred Peris
(2000/2001)

» Frédéric Bayart (2004)

» George Costakis and Martin Sambarino (2004)
>

>

v

Simultaneity of many dynamical properties are studied since 2004
Frédéric Bayart, CJr, Quentin Menet (2022)

Context: continuous families (T))xea, with A compact, acting on the
same space X in which there is D C X dense such that T has a right
inverse Sy : D — X, for all A € A.
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Very first criterion for general families of operators

Theorem (Costakis and Sambarino (2004))

Assume that, for each v € D and each compact interval K inside
A C R, the following properties hold true, where \, i € K.

(1) There exist k € N and a summable sequence of positive numbers
(ck)r such that

> || T7FSE (v)|| < e whenever n € Nyk >k and p < A;
> ||T{SE*(v)|| < er whenever n € N,k >k and A < p.

(2) Given n >0, one can find T > 0 such that, for alln > 1,
0<pu—A<7T = |T{S;(v) — vl <n.

Then (yep HCO(Ty) is a Gs-dense subset of X.

>>> We call this the CS-Criterion. <<

3/32



Almost there

Theorem (Bayart, CJr, Menet (2022))

Assume that there exist o € (0,1/d), > ad and D > 0 such that, for
each u € D and each compact cube K inside A C R?, the following
properties hold true, where \, i € K.

(1) There exist C >0, k € N such that, whenever
A= oo < D(nJrk)a, nkeNk>k,

n mn mn C
T3 S]] < k@ and || T3SE | < 5
(2) Given n > 0, there is 7 > 0 such that, for alln > 1,
(A= pl|l < Tz-—a = HT/{LSLLU —ul| <n.

Then (yep HCO(Ty) is a Gs-dense subset of X.
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Ideal d-dimensional generalization

Theorem (d-dimension CS-Criterion)

Assume that there is D > 0 such that, for each u € D and each

compact cube K inside A C R?, the following properties hold true,
where A\, € K.

(1) There exist k € N and a summable sequence of positive numbers
(ck)r such that, whenever ||A — p|lco < D(n+k)1/d’ n, ke Nk >k,

|TpRSiul| < e and || TESER|| < e
(2) Given n >0, there is T > 0 such that, for alln > 1,
A=l € =7 = |TESpu—ul <.

Then Nyep HO(Ty) is a Gs-dense subset of X.
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Ideal bi-dimensional CS-Criterion

Theorem (bi-dimensional CS-Criterion)

Assume that there is D > 0 such that, for each uw € D and each
compact square K, the following properties hold true, where A, u € K.

(1) There ezist k € N and a summable sequence of positive numbers
ce)i such that, whenever |[A — p|loo < Dy/ -2, n,k € Nk > &,
n+k
HT}}"’kSﬁuH < ¢ and HT/{LSLH'kuH < ¢p.
(2) Given n >0, there is T > 0 such that, for alln > 1,

A —pl < % = HT}\LSZu —ul| <.

Then Nyep HO(Ty) is a Gs-dense subset of X.
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A covering game

For proving the generalization of the CS-Criterion, we will choose the
sequence of powers (n;); of the form n;, = iN.

One can think of this as a covering game: we are given initial values

7> 0and N € N and we have to conveniently cover our parameter set
T T T

by squares of sides TN AN AN and so on.

How to organize these squares can be very tricky.
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A new approach

Let us explain the method for a simple case: \/LN = % We aim to
3 1 I T T T
cover a unit square by square pieces of side TN AN AN
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A new approach: using pseudo-Hilbert curves

Let us explain the method for a simple case: \/Lﬁ = % We aim to
3 1 I T T T
cover a unit square by square pieces of side TN AN AN

U

N\ /T
e
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A covering game: round 1

Value used:
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A covering game: round 1

Value used:
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A covering game: round 2

Values used:

T T T 1

> > =
V2N~ V3N~ VAN 22

1

22
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A covering game: round 3

Values used:

T T ST T i
VI6N 23

1
23
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A covering game: round 3

f\ f\ Values used:
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A covering game: round 4

Values used:

T T 1
V17N V6AN 24

2

TV
to make 48=3x42 pieces

EEEEEEEEEEEN
EEEEEEEEEEER
EEEEEEEEEEER
EEEEEEEEEEEE
1

2

12/32



A covering game: round 4

Values used:

T T 1
V17N V6AN 24

2

TV
to make 48=3x42 pieces

EEEEEEEEEEEN
EEEEEEEEEEER
EEEEEEEEEEER
EEEEEEEEEEEE
1

2

12/32



A covering game: round 4

NEN
A\ ,
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D ]
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\NE N_ UV [T\
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A covering game:

round 4
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A covering game: round 4

Round 4: victory!
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A covering game: round 5

Values used:

T T 1

V65N V256N 20

[\

TV
to make 192=3x43 pieces
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A covering game: round 5

Values used:

T T 1

V65N V256N 20

TV
to make 192=3x43 pieces

Round 5: victory. The game is over.
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How the enumeration of our covering looks like

MM
/N UYT])
ARSI
DRAN T
d \C\\)
PAEAEN
Nl
DT N |
PIATGADT P TN
S L)
AENE V[V
—‘F(JKJ

[IEN
=1 —
] [IF=NF=NI

Y]]

Ordering of A1, As, ..., Aosg such that K C Ufif; A;
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Sierpinski gasket

Obtaining the Sierpinski gasket through triangles
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Sierpinski gasket

¥

Obtaining the Sierpinski gasket through squares
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Dimension of the gasket

Let I be a unitary Sierpinski gasket inside [0, +00)2. The similarity

dimension (= Hausdorff dimension) of the gasket is dimy = }222’

Up to now, we knew how to state a generalization of the CS-Criterion

1 _ log2
for all o < Ty T = log3
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Applying the new approach to the gasket

The limit case we aim to address is @ = ey = izig
Tog 2

Once again, we are given values 7 > 0, N € N and we want to
construct a covering by squares of sides

T T T

log2 log2 7 log2 7 °**

NTog3 (QN) Tog 3 (3]\/') Tog 3

to make pieces for our covering.
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The covering game of the gasket: grouping method
Again, let us consider the simple case

T 1

log 2

NlogS

N
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The covering game of the gasket: grouping method
Again, let us consider the simple case
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The covering game of the gasket: grouping method
Again, let us consider the simple case

T 1
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N10g3
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The covering game of the gasket: grouping method
Again, let us consider the simple case

T 1
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|
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The covering game of the gasket: round 1

Value used:

EF
09
Wl
N —
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A covering game: round 1

Value used:
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Round 1: victory!
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The covering game of the gasket: round 2

Values used:

T T 1

>
(2N)©es  (3N)wees 27
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The covering game of the gasket: round 3

Values used:

T T
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The covering game of the gasket: round 3
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A covering game: round 3

Values used:
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The covering game of the gasket: round 4

Values used:
T T 1

(10N)

HEEEEEN
HEEEEEN]:
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A covering game: round 4

Values used:

T T 1
(10N) 165 (27N)gs 23

HEEEEEN
HEEEEEN]:

Round 4: victory! The game is over.
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How the enumeration of our covering looks like

Ordering of Ay, Ag, ..., Ag7 such that T' C U7, A,
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Koch snowflake

VAN 1 SN o
5t B U 5

Figure : The von Koch curve forms the well known Koch snowflake. It has

4 similarities and contraction ration % Its has Hausdorff dimension izigg

We can apply our method by making groups of 3 patches of parts.
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Minkowski sausage

Tl L Y
P Al Al

Figure : The Minkowski sasusage has 8 similarities with i contraction
ration. Its Hausdorff dimension is 1.5.

We can apply our method by making groups of 7 patches of parts.
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A new concept of dimension?

Definition. Let d > 1 and A C R? be compact. We say that A has
homogeneously ordered box dimension at most vy € (0, d) if there exist
r € [2,+00[, p > 0 and, for all m > 1, a compact covering (A;)icrm of
A satisfying the following.

(i) For all i e I'™,

: I A\™
diam(A;) < p(ﬂ/v) .

(ii) For all i = (i1, ..., i, imi1) € IMTL,

A CA

7:1y~~7im+1 i17'~~;inL'

(iii) For all i = (i1,...,4m) € I/* and all j € {2,...,r},
Aijoi,NA 1 # D

The homogeneously ordered box dimension of A (HBD® for short) is
the smallest number 7 such that A has homogeneously ordered box
dimension at most v. We will denote this number by dim§, 5(A).
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A full generalization of the CS-criterion

Theorem (Generalized Costakis-Sambarino Criterion)

Let d € N and v > 0 and let A be a compact subset of R? having
homogeneously ordered box dimension at most . Assume that there is
D > 0 such that, for all w € D and all compact K C A, the following
properties hold true, where all parameters A, i belong to K.

(1) There ezist k € N and a sequence of positive numbers (cr)ken
1/
such that Y ;- ¢ < 0o and, whenever || — pif| s < Dm,
with n,k € Ny and k > k, we have

|T5tespul| < e and ||TRSE )| < e
(2) Given n >0, one can find T > 0 such that, for alln € N,

= HT;LSZ“ —ul| <n.

-
A= pllo < A

Then (Nyep HC(T)) is a Gs-dense subset of X.
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Applications
Let d > 1 and I' C R? compact. We write A = (z1,...,z4) for any
A € R%. Consider a € (0,1/d] and a family (B (z,) ¥ 4.xB
induced by weights (w(w))x g Satisfying

w(za)) xer

wy(x) - wq(x) = exp(zn®).

Theorem
If T has HBO® at most v < d and 0 < a < 1/, then

ﬂ HC(Bw(zl) X A X Bw(md)) #+ .
Ael

Corollary
IfT is a B-Hélder curve and 0 < a < 3, then

ﬂ HC(BU,(“) X A X Bw(xd)) #+ o.
PYSI
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IFS, GIFS and optimal parametrizations

Construction of the Sierpinski carpet.
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IFS, GIFS and optimal parametrizations

Ordering the carpet (Rao and Zhang, 2016).
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Some open questions
> 7}7(;)2 =400 — ﬂz7y>0 HC(Bw(z) X Bw(y)) #+ o7
e For C C R the Cantor dust with dissection ratio 1/4,

(| ¢"Bxe'B+#0a?
(z,y)ec

e Can we, more generally, generalize our result for totally
disconnected fractals?

e Can we adapt optimally our technique to self-similar fractals with
non-uniform contraction ratio?

e For 7 C Ri the 1-dimensional Takagi curve,

m e*B x eYB # @7
(z,y)ET
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