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Common hypercyclicity though a Baire argument

Theorem (Basic Criterion)
Let Λ be a compact topological space and let (Tλ)λ∈Λ be a continuous
family of operators acing on the same Banach space X. Suppose that,
for every pair (u, v) ∈ D ×D, every ε > 0, there exist λ1, . . . , λq ∈ Λ,
sets Λ1, · · · ,Λq with λi ∈ Λi and positive integers n1, . . . , nq such that

1.
⋃

i Λi ⊃ Λ,

2. ∥
∑

i S
ni

λi
v∥ ≤ ε,

3. for all i = 1, ..., q and all λ ∈ Λi, ∥
∑

j ̸=i T
ni

λ S
nj

λj
v∥ ≤ ε,

4. for all i = 1, ..., q and all λ ∈ Λi, ∥Tni

λ u∥ ≤ ε

5. for all i = 1, ..., q and all λ ∈ Λi, ∥Tni

λ Sni

λi
v − v∥ ≤ ε.

Then
⋂

λ∈Λ HC(Tλ) is a dense Gδ subset of X.
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Let us consider again the family of weights w(a) =
(
w(a)

)
a∈[1,2]

given

by w1(a) · · ·wn(a) = exp(an), Ta := Bw(a) and Sa := Fw(a)−1 . For the
property (5) of the Basic Criterion, we get

∥Tni

λ Sni

λi
v − v∥ ≲ ni|λ− λi|.

Thus, the covering of [1, 2] has to be made of intervals Λ1, . . . ,Λq with
diam(Λi) ≤ ε

ni
.

We can take ni = iN and define a partition of the form

{1 2

ε ε

>>> Note that ni = iN is the absolute best that we can do! <<<
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General criterion in one dimension

Theorem (Costakis and Sambarino (2004))
Assume that, for each v ∈ D and each compact interval K ⊂ Λ, the
following properties hold true, where λ, µ ∈ K.

(1) There exist κ ∈ N and a summable sequence of positive numbers
(ck)k such that
▶ ∥Tn+k

λ Sn
µ (v)∥ ≤ ck whenever n ∈ N, k ≥ κ and µ ≤ λ;

▶ ∥Tn
λ Sn+k

µ (v)∥ ≤ ck whenever n ∈ N, k ≥ κ and λ ≤ µ.

(2) Given η > 0, one can find τ > 0 such that, for all n ≥ 1,

0 ≤ µ− λ ≤ τ
n =⇒ ∥Tn

λ S
n
µ(v)− v∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.

>>> We call this the CS-Criterion. <<<
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We are interested in the 2-dimensional case. Let Λ ⊂ R2
+ compact and

Tλ = Bw(x) ×Bw(y), ∀λ = (x, y) ∈ Λ,

acting on X = ℓp(N), p ∈ [1,+∞) or X = c0(N), where

w1(a) · · ·wn(a) = exp(anα), α ∈ (0, 1].

In order to apply the basic criterion, we we want:

▶ to cover Λ, say by squares Λ1, . . .Λq;

▶ to tag these squares, say by λ1, . . . , λq;

▶ to associate them to powers n1 < · · · < nq.

We write these tags in the form λj = (xj , yj).
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“Jump” constraints

When you try to verify condition (2) of the Basic Criterion, you fix
i ∈ {1, . . . , q}, λi ∈ Λi and you find something like

∑
j ̸=i

Bni

w(xi)
F

nj

w(xj)−1(v) ≈
q∑

j=i+1

1

exp((xj − xi)nα
j + xi(nj − ni)α)

enj−ni ,

and another symmetrical condition for the second coordinate. Hence,
for this to be small, we need at least, for all 1 ≤ i < j ≤ q,

(xj − xi)n
α
j + xi(nj − ni)

α > 0 and (yj − yi)n
α
j + yi(nj − ni)

α > 0.

This is a multi-dimensional difficulty. Either xj < xi or yj < yi with
j > i is called a “backward jump”. They cannot be avoided.

Note that we can rewrite these constraints into something like

∥λj − λi∥∞ ≤ D
(nj − ni)

α

nα
j

, for some D > 0.
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Almost there

Theorem (Bayart, Menet, FCJr, 2022)
For any square Λ ⊂ R2

+ (and X, (wn(x))x>0 as before),

α <
1

2
=⇒

⋂
λ∈Λ

HC(Bw(x) ×Bw(y)) ̸= ∅,

α >
1

2
=⇒

⋂
λ∈Λ

HC(Bw(x) ×Bw(y)) = ∅.

(This is a consequence of a generalized version of the CS-Criterion).

The limit case α = 1
2 corresponds to the weights

w1(x) · · ·wn(x) = exp(x
√
n).
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Ideal bi-dimensional CS-Criterion

Theorem (bi-dimensional CS-Criterion)
Assume that there is D > 0 such that, for each u ∈ D and each
compact square K, the following properties hold true, where λ, µ ∈ K.

(1) There exist κ ∈ N and a summable sequence of positive numbers

(ck)k such that, whenever ∥λ− µ∥∞ ≤ D
√

k
n+k , n, k ∈ N, k ≥ κ,∥∥Tn+k

λ Sn
µu

∥∥ ≤ ck and
∥∥Tn

λ S
n+k
µ u

∥∥ ≤ ck.

(2) Given η > 0, there is τ > 0 such that, for all n ≥ 1,

∥λ− µ∥ ≤ τ√
n

=⇒
∥∥Tn

λ S
n
µu− u

∥∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.
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A covering game

We would get a perfect generalization of the CS-Criterion if the
sequence of powers (ni)i could be taken as ni = iN .

One can think of this as a covering game: we are given initial values
τ > 0 and N ∈ N and we have to conveniently cover our parameter set
by squares of sides τ√

N
, τ√

2N
, τ√

3N
, ... and so on.

How to organize these squares is the difficult part of the process.
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There are multiple ways of organizing the pieces

We can also consider a canonical dyadic covering, that is, by 4m

squares of side 1/2m. There are many ways of ordering this covering.

Λ1 Λ2 Λ3 Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 Λ11 Λ12

Λ13 Λ14 Λ15 Λ16

Λ1 Λ2 Λ3 Λ4

Λ8 Λ7 Λ6 Λ5

Λ9 Λ10 Λ11 Λ12

Λ16 Λ15 Λ14 Λ13

Λ1 Λ2 Λ5 Λ6

Λ4 Λ3 Λ8 Λ7

Λ13 Λ14 Λ9 Λ10

Λ16 Λ15 Λ12 Λ11

(1) impossible (2) impossible (3) ok for α < 1/2
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Could dyadic partitions be enough for α = 1
2?

Figure : Dyadic partition of order 4

Suppose that we are allowed to
take the best sequence ni = iN .

For the dyadic partition of order
m, we divide the square in 4m

sub-squares of side 1
2m . Our

covering has 4m parts of the form

Λi =
[
xi, xi+

τ√
ni

]
×
[
yi, yi+

τ√
ni

]
,

for i = 1, . . . , 4m.

Since ni = iN , the last part Λ4m is a square of side

τ
√
n4m

=
τ√
4mN

=
1

2m
τ√
N

<<
1

2m
,

thus Λ4m will never cover a dyadic sub-square of order m, for N >> 0.
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A new approach

Let us explain the method for a simple case: τ√
N

= 1
2 . We aim to

cover a unit square by square pieces of side τ√
N
, τ√

2N
, τ√

3N
, ...
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A new approach: using pseudo-Hilbert curves

Let us explain the method for a simple case: τ√
N

= 1
2 . We aim to

cover a unit square by square pieces of side τ√
N
, τ√

2N
, τ√

3N
, ...
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A covering game: round 1

Value used:

τ√
N

=
1

2

victory!
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A covering game: round 2

Values used:

τ√
2N

>
τ√
3N

>
τ√
4N

=
1

22

victory!
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A covering game: round 3

Values used:

τ√
5N

>
τ√
6N

> · · · > τ√
16N

=
1

23

victory!
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A covering game: round 4

Values used:

τ√
17N

> · · · > τ√
64N︸ ︷︷ ︸

to make 48=3×42 pieces

=
1

24

victory!
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A covering game: round 5

Values used:

τ√
65N

> · · · > τ√
256N︸ ︷︷ ︸

to make 192=3×43 pieces

=
1

25

victory!
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How the enumeration of our covering looks like

Ordering of Λ1,Λ2, . . . ,Λ256 such that K ⊂
⋃256

i=1 Λi
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Sierpiński gasket

Obtaining the Sierpiński gasket through triangles
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Sierpiński gasket

Obtaining the Sierpiński gasket through squares
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Dimension of the gasket

Let Γ be a unitary Sierpiński gasket inside [0,+∞)2. The similarity
dimension (= Hausdorff dimension) of the gasket is dimH = log 3

log 2 . Up
to now, we knew that the weights of the form

w1(x) · · ·wn(x) = exp(xnα)

induce a bi-dimensional family
(
Bw(x) ×Bw(y)

)
(x,y)∈Γ

with a common

hypercyclic vector whenever α < 1
dimH Γ = log 2

log 3 .
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Applying the new approach to the gasket

The limit case we aim to address is α = 1
log 3
log 2

= log 2
log 3 .

Once again, we are given values τ > 0, N ∈ N and we want to
construct a covering by squares of sides

τ

N
log 2
log 3

,
τ

(2N)
log 2
log 3

,
τ

(3N)
log 2
log 3

, ...

to make pieces for our covering.
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The covering game of the gasket: grouping method

Again, let us consider the simple case

τ

N
log 2
log 3

=
1

2
.
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The covering game of the gasket: round 1

Value used:

τ

(N
log 2
log 3 )

=
1

2

victory!
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The covering game of the gasket: round 2

Values used:

τ

(2N)
log 2
log 3

>
τ

(3N)
log 2
log 3

=
1

22

victory!
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The covering game of the gasket: round 3

Values used:

τ

(4N)
log 2
log 3

> · · · > τ

(9N)
log 2
log 3

=
1

23

victory!
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The covering game of the gasket: round 4

Values used:

τ

(10N)
log 2
log 3

> · · · > τ

(27N)
log 2
log 3

=
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victory!

26 / 35



The covering game of the gasket: round 4

Values used:

τ

(10N)
log 2
log 3

> · · · > τ

(27N)
log 2
log 3

=
1

23

victory!

26 / 35



A covering game: round 4

Values used:

τ

(10N)
log 2
log 3

> · · · > τ

(27N)
log 2
log 3

=
1

23

victory!

26 / 35



A covering game: round 4

Values used:

τ

(10N)
log 2
log 3

> · · · > τ

(27N)
log 2
log 3

=
1

23

Round 4: victory! The game is over.

26 / 35



A covering game: round 4

Values used:

τ

(10N)
log 2
log 3

> · · · > τ

(27N)
log 2
log 3

=
1

23

Round 4: victory! The game is over.

26 / 35



How the enumeration of our covering looks like

Ordering of Λ1,Λ2, . . . ,Λ27 such that Γ ⊂
⋃27

i=1 Λi
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Koch snowflake

Figure : The von Koch curve forms the well known Koch snowflake. It has
4 similarities and contraction ration 1

3
. Its has Hausdorff dimension log(4)

log(3)
.

We can apply our method by making groups of 3 patches of parts.
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Minkowski sausage

Figure : The Minkowski sasusage has 8 similarities with 1
4
contraction

ration. Its Hausdorff dimension is 1.5.

We can apply our method by making groups of 7 patches of parts.
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A new concept of dimension?

Definition. Let d ≥ 1 and Λ ⊂ Rd be compact. We say that Λ has
homogeneously ordered box dimension at most γ ∈ (0, d] if there exist
r ∈ [[2,+∞[[, ρ > 0 and, for all m ≥ 1, a compact covering (Λi)i∈Im

r
of

Λ satisfying the following.

(i) For all i ∈ Imr ,

diam(Λi) ≤ ρ

(
1

r1/γ

)m

.

(ii) For all i = (i1, ..., im, im+1) ∈ Im+1
r ,

Λi1,...,im+1 ⊂ Λi1,...,im .

(iii) For all i = (i1, ..., im) ∈ Imr and all j ∈ {2, ..., r},

Λi,j−1,r ∩ Λi,j,1 ̸= ∅.

The homogeneously ordered box dimension of Λ (HBD◦ for short) is
the smallest number γ such that Λ has homogeneously ordered box
dimension at most γ. We will denote this number by dim◦

HB(Λ).
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A full generalization of the CS-criterion

Theorem (Generalized Costakis-Sambarino Criterion)
Let d ∈ N and γ > 0 and let Λ be a compact subset of Rd having
homogeneously ordered box dimension at most γ. Assume that there is
D > 0 such that, for all u ∈ D and all compact K ⊂ Λ, the following
properties hold true, where all parameters λ, µ belong to K.

(1) There exist κ ∈ N and a sequence of positive numbers (ck)k∈N

such that
∑∞

k=κ ck < ∞ and, whenever ∥λ− µ∥∞ ≤ D k1/γ

(n+k)1/γ
,

with n, k ∈ N0 and k ≥ κ, we have∥∥Tn+k
λ Sn

µu
∥∥ ≤ ck and

∥∥Tn
λ S

n+k
µ u

∥∥ ≤ ck.

(2) Given η > 0, one can find τ > 0 such that, for all n ∈ N,

∥λ− µ∥∞ ≤ τ

n1/γ
=⇒

∥∥Tn
λ S

n
µu− u

∥∥ < η.

Then
⋂

λ∈Λ HC(Tλ) is a Gδ-dense subset of X.
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Applications
Let d ≥ 1 and Γ ⊂ Rd compact. We write λ = (x1, . . . , xd) for any

λ ∈ Rd. Consider α ∈ (0, 1/d] and a family
(
Bw(x1) ×

d· · · ×Bw(xd)

)
λ∈Γ

induced by weights
(
w(x)

)
x∈R satisfying

w1(x) · · ·wd(x) ≈ exp(xnα).

Theorem
If Γ has HBO◦ at most γ ≤ d and 0 < α ≤ 1/γ, then⋂

λ∈Γ

HC
(
Bw(x1) ×

d· · · ×Bw(xd)

)
̸= ∅.

Corollary
If Γ is a β-Hölder curve and 0 < α ≤ β, then⋂

λ∈Γ

HC
(
Bw(x1) ×

d· · · ×Bw(xd)

)
̸= ∅.
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IFS, GIFS and optimal parametrizations

Construction of the Sierpiński carpet.
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IFS, GIFS and optimal parametrizations

Ordering the carpet (Rao and Zhang, 2016).
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Some open questions

•
∑

1
F (n)2 = +∞ =⇒

⋂
x,y>0 HC(Bw(x) ×Bw(y)) ̸= ∅?

• For C ⊂ R2
+ the Cantor dust with dissection ratio 1/4,⋂

(x,y)∈C

exB × eyB ̸= ∅?

• Can we, more generally, generalize our result for totally
disconnected fractals?

• Can we adapt optimally our technique to self-similar fractals with
non-uniform contraction ratio?

• For T ⊂ R2
+ the 1-dimensional Takagi curve,⋂

(x,y)∈T

exB × eyB ̸= ∅?
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Frame Title

Thanks for your attention!
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