Self-similar fractals and common hypercyclicity
 45th Summer Symposium in Real Analysis

Fernando Costa Jr.

Laboratoire de Mathématiques d'Avignon
Avignon Université
June 21, 2023

Common hypercyclicity though a Baire argument

Theorem (Basic Criterion)

Let Λ be a compact topological space and let $\left(T_{\lambda}\right)_{\lambda \in \Lambda}$ be a continuous family of operators acing on the same Banach space X. Suppose that, for every pair $(u, v) \in \mathcal{D} \times \mathcal{D}$, every $\varepsilon>0$, there exist $\lambda_{1}, \ldots, \lambda_{q} \in \Lambda$, sets $\Lambda_{1}, \cdots, \Lambda_{q}$ with $\lambda_{i} \in \Lambda_{i}$ and positive integers n_{1}, \ldots, n_{q} such that

1. $\bigcup_{i} \Lambda_{i} \supset \Lambda$,
2. $\left\|\sum_{i} S_{\lambda_{i}}^{n_{i}} v\right\| \leq \varepsilon$,
3. for all $i=1, \ldots, q$ and all $\lambda \in \Lambda_{i},\left\|\sum_{j \neq i} T_{\lambda}^{n_{i}} S_{\lambda_{j}}^{n_{j}} v\right\| \leq \varepsilon$,
4. for all $i=1, \ldots, q$ and all $\lambda \in \Lambda_{i},\left\|T_{\lambda}^{n_{i}} u\right\| \leq \varepsilon$
5. for all $i=1, \ldots, q$ and all $\lambda \in \Lambda_{i},\left\|T_{\lambda}^{n_{i}} S_{\lambda_{i}}^{n_{i}} v-v\right\| \leq \varepsilon$.

Then $\bigcap_{\lambda \in \Lambda} H C\left(T_{\lambda}\right)$ is a dense G_{δ} subset of X.

Let us consider again the family of weights $w(a)=(w(a))_{a \in[1,2]}$ given by $w_{1}(a) \cdots w_{n}(a)=\exp (a n), T_{a}:=B_{w(a)}$ and $S_{a}:=F_{w(a)^{-1}}$. For the property (5) of the Basic Criterion, we get

$$
\left\|T_{\lambda}^{n_{i}} S_{\lambda_{i}}^{n_{i}} v-v\right\| \lesssim n_{i}\left|\lambda-\lambda_{i}\right|
$$

Thus, the covering of $[1,2]$ has to be made of intervals $\Lambda_{1}, \ldots, \Lambda_{q}$ with $\operatorname{diam}\left(\Lambda_{i}\right) \leq \frac{\varepsilon}{n_{i}}$.

We can take $n_{i}=i N$ and define a partition of the form

\ggg Note that $n_{i}=i N$ is the absolute best that we can do! <<<

General criterion in one dimension

Theorem (Costakis and Sambarino (2004))

Assume that, for each $v \in \mathcal{D}$ and each compact interval $K \subset \Lambda$, the following properties hold true, where $\lambda, \mu \in K$.
(1) There exist $\kappa \in \mathbb{N}$ and a summable sequence of positive numbers $\left(c_{k}\right)_{k}$ such that

- $\left\|T_{\lambda}^{n+k} S_{\mu}^{n}(v)\right\| \leq c_{k}$ whenever $n \in \mathbb{N}, k \geq \kappa$ and $\mu \leq \lambda$;
- $\left\|T_{\lambda}^{n} S_{\mu}^{n+k}(v)\right\| \leq c_{k}$ whenever $n \in \mathbb{N}, k \geq \kappa$ and $\lambda \leq \mu$.
(2) Given $\eta>0$, one can find $\tau>0$ such that, for all $n \geq 1$,

$$
0 \leq \mu-\lambda \leq \frac{\tau}{n} \Longrightarrow\left\|T_{\lambda}^{n} S_{\mu}^{n}(v)-v\right\|<\eta
$$

Then $\bigcap_{\lambda \in \Lambda} H C\left(T_{\lambda}\right)$ is a G_{δ}-dense subset of X.
\ggg We call this the CS-Criterion. <<

We are interested in the 2-dimensional case. Let $\Lambda \subset \mathbb{R}_{+}^{2}$ compact and

$$
T_{\lambda}=B_{w(x)} \times B_{w(y)}, \quad \forall \lambda=(x, y) \in \Lambda,
$$

acting on $X=\ell_{p}(\mathbb{N}), p \in[1,+\infty)$ or $X=c_{0}(\mathbb{N})$, where

$$
w_{1}(a) \cdots w_{n}(a)=\exp \left(a n^{\alpha}\right), \quad \alpha \in(0,1] .
$$

In order to apply the basic criterion, we we want:

- to cover Λ, say by squares $\Lambda_{1}, \ldots \Lambda_{q}$;
- to tag these squares, say by $\lambda_{1}, \ldots, \lambda_{q}$;
- to associate them to powers $n_{1}<\cdots<n_{q}$.

We write these tags in the form $\lambda_{j}=\left(x_{j}, y_{j}\right)$.

"Jump" constraints

When you try to verify condition (2) of the Basic Criterion, you fix $i \in\{1, \ldots, q\}, \lambda_{i} \in \Lambda_{i}$ and you find something like
$\sum_{j \neq i} B_{w\left(x_{i}\right)}^{n_{i}} F_{w\left(x_{j}\right)^{-1}}^{n_{j}}(v) \approx \sum_{j=i+1}^{q} \frac{1}{\exp \left(\left(x_{j}-x_{i}\right) n_{j}^{\alpha}+x_{i}\left(n_{j}-n_{i}\right)^{\alpha}\right)} e_{n_{j}-n_{i}}$,
and another symmetrical condition for the second coordinate. Hence, for this to be small, we need at least, for all $1 \leq i<j \leq q$,

$$
\left(x_{j}-x_{i}\right) n_{j}^{\alpha}+x_{i}\left(n_{j}-n_{i}\right)^{\alpha}>0 \quad \text { and } \quad\left(y_{j}-y_{i}\right) n_{j}^{\alpha}+y_{i}\left(n_{j}-n_{i}\right)^{\alpha}>0 .
$$

This is a multi-dimensional difficulty. Either $x_{j}<x_{i}$ or $y_{j}<y_{i}$ with $j>i$ is called a "backward jump". They cannot be avoided.

Note that we can rewrite these constraints into something like

$$
\left\|\lambda_{j}-\lambda_{i}\right\|_{\infty} \leq D \frac{\left(n_{j}-n_{i}\right)^{\alpha}}{n_{j}^{\alpha}}, \quad \text { for some } D>0
$$

Almost there

Theorem (Bayart, Menet, FCJr, 2022)
For any square $\Lambda \subset \mathbb{R}_{+}^{2}\left(\right.$ and $X,\left(w_{n}(x)\right)_{x>0}$ as before),

$$
\begin{aligned}
& \alpha<\frac{1}{2} \Longrightarrow \bigcap_{\lambda \in \Lambda} H C\left(B_{w(x)} \times B_{w(y)}\right) \neq \varnothing \\
& \alpha>\frac{1}{2} \Longrightarrow \bigcap_{\lambda \in \Lambda} H C\left(B_{w(x)} \times B_{w(y)}\right)=\varnothing
\end{aligned}
$$

(This is a consequence of a generalized version of the CS-Criterion).
The limit case $\alpha=\frac{1}{2}$ corresponds to the weights

$$
w_{1}(x) \cdots w_{n}(x)=\exp (x \sqrt{n})
$$

Ideal bi-dimensional CS-Criterion

Theorem (bi-dimensional CS-Criterion)

Assume that there is $D>0$ such that, for each $u \in \mathcal{D}$ and each compact square K, the following properties hold true, where $\lambda, \mu \in K$.
(1) There exist $\kappa \in \mathbb{N}$ and a summable sequence of positive numbers $\left(c_{k}\right)_{k}$ such that, whenever $\|\lambda-\mu\|_{\infty} \leq D \sqrt{\frac{k}{n+k}}, n, k \in \mathbb{N}, k \geq \kappa$,

$$
\left\|T_{\lambda}^{n+k} S_{\mu}^{n} u\right\| \leq c_{k} \quad \text { and } \quad\left\|T_{\lambda}^{n} S_{\mu}^{n+k} u\right\| \leq c_{k}
$$

(2) Given $\eta>0$, there is $\tau>0$ such that, for all $n \geq 1$,

$$
\|\lambda-\mu\| \leq \frac{\tau}{\sqrt{n}} \Longrightarrow\left\|T_{\lambda}^{n} S_{\mu}^{n} u-u\right\|<\eta
$$

Then $\bigcap_{\lambda \in \Lambda} H C\left(T_{\lambda}\right)$ is a G_{δ}-dense subset of X.

A covering game

We would get a perfect generalization of the CS-Criterion if the sequence of powers $\left(n_{i}\right)_{i}$ could be taken as $n_{i}=i N$.

One can think of this as a covering game: we are given initial values $\tau>0$ and $N \in \mathbb{N}$ and we have to conveniently cover our parameter set by squares of sides $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$ and so on.

How to organize these squares is the difficult part of the process.

There are multiple ways of organizing the pieces

We can also consider a canonical dyadic covering, that is, by 4^{m} squares of side $1 / 2^{m}$. There are many ways of ordering this covering.

Λ_{13}	Λ_{14}	Λ_{15}	Λ_{16}	Λ_{16}	Λ_{15}	Λ_{14}	Λ_{13}	Λ_{16}	Λ_{15}	Λ_{12}	Λ_{11}
Λ_{9}	Λ_{10}	Λ_{11}	Λ_{12}	Λ_{9}	Λ_{10}	Λ_{11}	Λ_{12}	Λ_{13}	Λ_{14}	Λ_{9}	Λ_{10}
Λ_{5}	Λ_{6}	Λ_{7}	Λ_{8}	Λ_{8}	Λ_{7}	Λ_{6}	Λ_{5}	Λ_{4}	Λ_{3}	Λ_{8}	Λ_{7}
Λ_{1}	Λ_{2}	Λ_{3}	Λ_{4}	Λ_{1}	Λ_{2}	Λ_{3}	Λ_{4}	Λ_{1}	Λ_{2}	Λ_{5}	Λ_{6}

(1) impossible
(2) impossible
(3) ok for $\alpha<1 / 2$

Could dyadic partitions be enough for $\alpha=\frac{1}{2}$?

Suppose that we are allowed to take the best sequence $n_{i}=i N$.

For the dyadic partition of order m, we divide the square in 4^{m} sub-squares of side $\frac{1}{2^{m}}$. Our covering has 4^{m} parts of the form

$$
\Lambda_{i}=\left[x_{i}, x_{i}+\frac{\tau}{\sqrt{n_{i}}}\right] \times\left[y_{i}, y_{i}+\frac{\tau}{\sqrt{n_{i}}}\right],
$$

Figure : Dyadic partition of order 4 for $i=1, \ldots, 4^{m}$.
Since $n_{i}=i N$, the last part $\Lambda_{4^{m}}$ is a square of side

$$
\frac{\tau}{\sqrt{n_{4^{m}}}}=\frac{\tau}{\sqrt{4^{m} N}}=\frac{1}{2^{m}} \frac{\tau}{\sqrt{N}} \ll \frac{1}{2^{m}}
$$

thus $\Lambda_{4^{m}}$ will never cover a dyadic sub-square of order m, for $N \gg 0$.

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A new approach: using pseudo-Hilbert curves

Let us explain the method for a simple case: $\frac{\tau}{\sqrt{N}}=\frac{1}{2}$. We aim to cover a unit square by square pieces of side $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2 N}}, \frac{\tau}{\sqrt{3 N}}, \ldots$

A covering game: round 1

Value used:

$$
\frac{\tau}{\sqrt{N}}=\frac{1}{2}
$$

A covering game: round 1

Value used:

$$
\frac{\tau}{\sqrt{N}}=\frac{1}{2}
$$

$$
\int \frac{\tau}{\sqrt{N}}=\frac{1}{2}
$$

A covering game: round 1

Value used:

$$
\frac{\tau}{\sqrt{N}}=\frac{1}{2}
$$

A covering game: round 1

Value used:

$$
\frac{\tau}{\sqrt{N}}=\frac{1}{2}
$$

Round 1: victory!

A covering game: round 2

Values used:

$$
\frac{\tau}{\sqrt{2 N}}>\frac{\tau}{\sqrt{3 N}}>\frac{\tau}{\sqrt{4 N}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{\sqrt{2 N}}>\frac{\tau}{\sqrt{3 N}}>\frac{\tau}{\sqrt{4 N}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{\sqrt{2 N}}>\frac{\tau}{\sqrt{3 N}}>\frac{\tau}{\sqrt{4 N}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{\sqrt{2 N}}>\frac{\tau}{\sqrt{3 N}}>\frac{\tau}{\sqrt{4 N}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{\sqrt{2 N}}>\frac{\tau}{\sqrt{3 N}}>\frac{\tau}{\sqrt{4 N}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{\sqrt{2 N}}>\frac{\tau}{\sqrt{3 N}}>\frac{\tau}{\sqrt{4 N}}=\frac{1}{2^{2}}
$$

Round 2: victory!

A covering game: round 3

Values used:
$\frac{\tau}{\sqrt{5 N}}>\frac{\tau}{\sqrt{6 N}}>\cdots>\frac{\tau}{\sqrt{16 N}}=\frac{1}{2^{3}}$

A covering game: round 3

Values used:
$\frac{\tau}{\sqrt{5 N}}>\frac{\tau}{\sqrt{6 N}}>\cdots>\frac{\tau}{\sqrt{16 N}}=\frac{1}{2^{3}}$

\square

A covering game: round 3

Values used:
$\frac{\tau}{\sqrt{5 N}}>\frac{\tau}{\sqrt{6 N}}>\cdots>\frac{\tau}{\sqrt{16 N}}=\frac{1}{2^{3}}$

A covering game: round 3

Values used:
$\frac{\tau}{\sqrt{5 N}}>\frac{\tau}{\sqrt{6 N}}>\cdots>\frac{\tau}{\sqrt{16 N}}=\frac{1}{2^{3}}$

\square

A covering game: round 3

Values used:
$\frac{\tau}{\sqrt{5 N}}>\frac{\tau}{\sqrt{6 N}}>\cdots>\frac{\tau}{\sqrt{16 N}}=\frac{1}{2^{3}}$

\square

A covering game: round 3

Values used:
$\frac{\tau}{\sqrt{5 N}}>\frac{\tau}{\sqrt{6 N}}>\cdots>\frac{\tau}{\sqrt{16 N}}=\frac{1}{2^{3}}$

Round 3: victory!

A covering game: round 4

Values used:
$\underbrace{\frac{\tau}{\sqrt{17 N}}>\cdots>\frac{\tau}{\sqrt{64 N}}}_{\text {to make } 48=3 \times 4^{2} \text { pieces }}=\frac{1}{2^{4}}$

A covering game: round 4

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{17 N}}>\cdots>\frac{\tau}{\sqrt{64 N}}}_{\text {to make } 48=3 \times 4^{2} \text { pieces }}=\frac{1}{2^{4}}
$$

A covering game: round 4

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{17 N}}>\cdots>\frac{\tau}{\sqrt{64 N}}}_{\text {to make } 48=3 \times 4^{2} \text { pieces }}=\frac{1}{2^{4}}
$$

A covering game: round 4

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{17 N}}>\cdots>\frac{\tau}{\sqrt{64 N}}}_{\text {to make } 48=3 \times 4^{2} \text { pieces }}=\frac{1}{2^{4}}
$$

A covering game: round 4

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{17 N}}>\cdots>\frac{\tau}{\sqrt{64 N}}}_{\text {to make } 48=3 \times 4^{2} \text { pieces }}=\frac{1}{2^{4}}
$$

Round 4: victory!

A covering game: round 5

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{65 N}}>\cdots>\frac{\tau}{\sqrt{256 N}}}_{\text {to make } 192=3 \times 4^{3} \text { pieces }}=\frac{1}{2^{5}}
$$

A covering game: round 5

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{65 N}}>\cdots>\frac{\tau}{\sqrt{256 N}}}_{\text {to make } 192=3 \times 4^{3} \text { pieces }}=\frac{1}{2^{5}}
$$

A covering game: round 5

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{65 N}}>\cdots>\frac{\tau}{\sqrt{256 N}}}_{\text {to make } 192=3 \times 4^{3} \text { pieces }}=\frac{1}{2^{5}}
$$

A covering game: round 5

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{65 N}}>\cdots>\frac{\tau}{\sqrt{256 N}}}_{\text {to make } 192=3 \times 4^{3} \text { pieces }}=\frac{1}{2^{5}}
$$

A covering game: round 5

Values used:

$$
\underbrace{\frac{\tau}{\sqrt{65 N}}>\cdots>\frac{\tau}{\sqrt{256 N}}}_{\text {to make } 192=3 \times 4^{3} \text { pieces }}=\frac{1}{2^{5}}
$$

Round 5: victory. The game is over.

How the enumeration of our covering looks like

Ordering of $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{256}$ such that $K \subset \bigcup_{i=1}^{256} \Lambda_{i}$

Sierpiński gasket

Obtaining the Sierpiński gasket through triangles

Sierpiński gasket

Obtaining the Sierpiński gasket through squares

Dimension of the gasket

Let Γ be a unitary Sierpiński gasket inside $[0,+\infty)^{2}$. The similarity dimension (= Hausdorff dimension) of the gasket is $\operatorname{dim}_{\mathcal{H}}=\frac{\log 3}{\log 2}$. Up to now, we knew that the weights of the form

$$
w_{1}(x) \cdots w_{n}(x)=\exp \left(x n^{\alpha}\right)
$$

induce a bi-dimensional family $\left(B_{w(x)} \times B_{w(y)}\right)_{(x, y) \in \Gamma}$ with a common hypercyclic vector whenever $\alpha<\frac{1}{\operatorname{dim}_{\mathcal{H}} \Gamma}=\frac{\log 2}{\log 3}$.

Applying the new approach to the gasket

The limit case we aim to address is $\alpha=\frac{1}{\frac{\log 3}{\log 2}}=\frac{\log 2}{\log 3}$.
Once again, we are given values $\tau>0, N \in \mathbb{N}$ and we want to construct a covering by squares of sides

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}, \frac{\tau}{(2 N)^{\frac{\log 2}{\log 3}}}, \frac{\tau}{(3 N)^{\frac{\log 2}{\log 3}}}, \ldots
$$

to make pieces for our covering.

The covering game of the gasket: grouping method

Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method
Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method
Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: grouping method Again, let us consider the simple case

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: round 1

Value used:

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

The covering game of the gasket: round 1

Value used:

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

A covering game: round 1

Value used:

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

A covering game: round 1

Value used:

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

A covering game: round 1

Value used:

$$
\frac{\tau}{N^{\frac{\log 2}{\log 3}}}=\frac{1}{2}
$$

Round 1: victory!

The covering game of the gasket: round 2

Values used:

$$
\frac{\tau}{(2 N)^{\frac{\log 2}{\log 3}}}>\frac{\tau}{(3 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{2}}
$$

The covering game of the gasket: round 2

Values used:

$$
\frac{\tau}{(2 N)^{\frac{\log 2}{\log 3}}}>\frac{\tau}{(3 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{(2 N)^{\frac{\log 2}{\log 3}}}>\frac{\tau}{(3 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{(2 N)^{\frac{\log 2}{\log 3}}}>\frac{\tau}{(3 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{2}}
$$

A covering game: round 2

Values used:

$$
\frac{\tau}{(2 N)^{\frac{\log 2}{\log 3}}}>\frac{\tau}{(3 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{2}}
$$

Round 2: victory!

The covering game of the gasket: round 3

Values used:
$\frac{\tau}{(4 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(9 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$
$\square \frac{1}{2^{3}}$

The covering game of the gasket: round 3

Values used:
$\frac{\tau}{(4 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(9 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$

A covering game: round 3

Values used:
$\frac{\tau}{(4 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(9 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$

A covering game: round 3

Values used:
$\frac{\tau}{(4 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(9 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$

A covering game: round 3

Values used:
$\frac{\tau}{(4 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(9 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$

Round 3: victory!

The covering game of the gasket: round 4

Values used:

$$
\frac{\tau}{(10 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(27 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}
$$

\square
\square

The covering game of the gasket: round 4

Values used:

$$
\frac{\tau}{(10 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(27 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}
$$

\square
\square

A covering game: round 4

Values used:
$\frac{\tau}{(10 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(27 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$

- $\square^{-\square}$
\square
$\square \square \square \square \square \square \mathrm{I}_{\frac{1}{2}}^{\text {¹ }}$

A covering game: round 4

Values used:
$\frac{\tau}{(10 N)^{\frac{\log 2}{\log 3}}}>\cdots>\frac{\tau}{(27 N)^{\frac{\log 2}{\log 3}}}=\frac{1}{2^{3}}$
\square
\square
$\square \square \square \square \square \square I^{\frac{1}{x}}$

A covering game: round 4

Values used:

$$
\begin{gathered}
\frac{\tau}{(10 N) \log ^{\log \frac{2}{2} 5}}>\cdots>\frac{\tau}{(27 N)^{\log \frac{\log _{2} 5}{2}}}=\frac{1}{2^{3}} \\
\square \square \square \\
\square \square \square \\
\square
\end{gathered}
$$

Round 4: victory! The game is over.

How the enumeration of our covering looks like

Ordering of $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{27}$ such that $\Gamma \subset \bigcup_{i=1}^{27} \Lambda_{i}$

Koch snowflake

Figure: The von Koch curve forms the well known Koch snowflake. It has 4 similarities and contraction ration $\frac{1}{3}$. Its has Hausdorff dimension $\frac{\log (4)}{\log (3)}$.

We can apply our method by making groups of 3 patches of parts.

Minkowski sausage

Figure: The Minkowski sasusage has 8 similarities with $\frac{1}{4}$ contraction ration. Its Hausdorff dimension is 1.5.

We can apply our method by making groups of 7 patches of parts.

A new concept of dimension?

Definition. Let $d \geq 1$ and $\Lambda \subset \mathbb{R}^{d}$ be compact. We say that Λ has homogeneously ordered box dimension at most $\gamma \in(0, d]$ if there exist $r \in \llbracket 2,+\infty \llbracket, \rho>0$ and, for all $m \geq 1$, a compact covering $\left(\Lambda_{\mathbf{i}}\right)_{\mathbf{i} \in I_{r}^{m}}$ of Λ satisfying the following.
(i) For all $\mathbf{i} \in I_{r}^{m}$,

$$
\operatorname{diam}\left(\Lambda_{\mathbf{i}}\right) \leq \rho\left(\frac{1}{r^{1 / \gamma}}\right)^{m}
$$

(ii) For all $\mathbf{i}=\left(i_{1}, \ldots, i_{m}, i_{m+1}\right) \in I_{r}^{m+1}$,

$$
\Lambda_{i_{1}, \ldots, i_{m+1}} \subset \Lambda_{i_{1}, \ldots, i_{m}}
$$

(iii) For all $\mathbf{i}=\left(i_{1}, \ldots, i_{m}\right) \in I_{r}^{m}$ and all $j \in\{2, \ldots, r\}$,

$$
\Lambda_{\mathbf{i}, j-1, r} \cap \Lambda_{\mathbf{i}, j, 1} \neq \varnothing
$$

The homogeneously ordered box dimension of Λ (HBD° for short) is the smallest number γ such that Λ has homogeneously ordered box dimension at most γ. We will denote this number by $\operatorname{dim}_{H B}^{\circ}(\Lambda)$.

A full generalization of the CS-criterion

Theorem (Generalized Costakis-Sambarino Criterion)

Let $d \in \mathbb{N}$ and $\gamma>0$ and let Λ be a compact subset of \mathbb{R}^{d} having homogeneously ordered box dimension at most γ. Assume that there is $D>0$ such that, for all $u \in \mathcal{D}$ and all compact $K \subset \Lambda$, the following properties hold true, where all parameters λ, μ belong to K.
(1) There exist $\kappa \in \mathbb{N}$ and a sequence of positive numbers $\left(c_{k}\right)_{k \in \mathbb{N}}$ such that $\sum_{k=\kappa}^{\infty} c_{k}<\infty$ and, whenever $\|\lambda-\mu\|_{\infty} \leq D \frac{k^{1 / \gamma}}{(n+k)^{1 / \gamma}}$, with $n, k \in \mathbb{N}_{0}$ and $k \geq \kappa$, we have

$$
\left\|T_{\lambda}^{n+k} S_{\mu}^{n} u\right\| \leq c_{k} \quad \text { and } \quad\left\|T_{\lambda}^{n} S_{\mu}^{n+k} u\right\| \leq c_{k}
$$

(2) Given $\eta>0$, one can find $\tau>0$ such that, for all $n \in \mathbb{N}$,

$$
\|\lambda-\mu\|_{\infty} \leq \frac{\tau}{n^{1 / \gamma}} \Longrightarrow\left\|T_{\lambda}^{n} S_{\mu}^{n} u-u\right\|<\eta
$$

Then $\bigcap_{\lambda \in \Lambda} H C\left(T_{\lambda}\right)$ is a G_{δ}-dense subset of X.

Applications

Let $d \geq 1$ and $\Gamma \subset \mathbb{R}^{d}$ compact. We write $\lambda=\left(x_{1}, \ldots, x_{d}\right)$ for any $\lambda \in \mathbb{R}^{d}$. Consider $\alpha \in(0,1 / d]$ and a family $\left(B_{w\left(x_{1}\right)} \times \stackrel{d}{d} \times B_{w\left(x_{d}\right)}\right)_{\lambda \in \Gamma}$ induced by weights $(w(x))_{x \in \mathbb{R}}$ satisfying

$$
w_{1}(x) \cdots w_{d}(x) \approx \exp \left(x n^{\alpha}\right)
$$

Theorem
If Γ has $H B O^{\circ}$ at most $\gamma \leq d$ and $0<\alpha \leq 1 / \gamma$, then

$$
\bigcap_{\lambda \in \Gamma} H C\left(B_{w\left(x_{1}\right)} \times \stackrel{d}{\cdots} \times B_{w\left(x_{d}\right)}\right) \neq \varnothing .
$$

Corollary
If Γ is a β-Hölder curve and $0<\alpha \leq \beta$, then

$$
\bigcap_{\lambda \in \Gamma} H C\left(B_{w\left(x_{1}\right)} \times \stackrel{d}{\cdots} \times B_{w\left(x_{d}\right)}\right) \neq \varnothing
$$

IFS, GIFS and optimal parametrizations

Construction of the Sierpiński carpet.

IFS, GIFS and optimal parametrizations

Ordering the carpet (Rao and Zhang, 2016).

Some open questions

- $\sum \frac{1}{F(n)^{2}}=+\infty \Longrightarrow \bigcap_{x, y>0} H C\left(B_{w(x)} \times B_{w(y)}\right) \neq \varnothing$?
- For $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ the Cantor dust with dissection ratio $1 / 4$,

$$
\bigcap_{(x, y) \in \mathcal{C}} e^{x} B \times e^{y} B \neq \varnothing ?
$$

- Can we, more generally, generalize our result for totally disconnected fractals?
- Can we adapt optimally our technique to self-similar fractals with non-uniform contraction ratio?
- For $\mathcal{T} \subset \mathbb{R}_{+}^{2}$ the 1-dimensional Takagi curve,

$$
\bigcap_{(x, y) \in \mathcal{T}} e^{x} B \times e^{y} B \neq \varnothing ?
$$

Frame Title

Thanks for your attention!

References

[1] E. Abakumov and J. Gordon. Common hypercyclic vectors for multiples of backward shift. Journal of Functional Analysis 200.2 (2003): 494-504.
[2] G. Costakis and M. Sambarino. Genericity of wild holomorphic functions and common hypercyclic vectors. Advances in Mathematics 182.2 (2004): 278-306.
[3] F. Bayart and É. Matheron. Dynamics of linear operators. Cambridge Tracts in Mathematics No. 179. Cambridge university press, 2009.
[4] F. Bayart, F. Costa Jr. and Q. Menet. Common hypercyclic vectors and dimension of the parameter set. Indiana University Mathematics Journal 71.4 (2022): 1763-1795.
[5] A. Peris. Common hypercyclic vectors for backward shifts, Operator Theory Seminar, Michigan State University (2000/01).
[6] H. Rao and S.-Q. Zhang. Space-filling curves of self-similar sets (I): iterated function systems with order structures. Nonlinearity 29.7 (2016): 2112.

