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Hypercyclicity and common hypercyclicity

> Let X be a separable Banach space and T': X — X be linear and
continuous (= operator).

We say that x € X is a hypercyclic vector for T" when its orbit
Orb(z,T) := {IT"x : n > 0} is dense in X. If such a vector exists we
say that T is a hypercyclic operator on X. The set of hypercyclic
vectors for an operator T is denoted by HC(T).

» Let d > 1, let A C R? be compact and let (T))xea be a family of
operators acting on X such that the map (A, z) — Ty (z) is
continuous (= continuous family).

We say that € X is a common hypercyclic vector for (T))xca
when x € HC(Ty) for all A € A. If such a vector exists we say that
(T\)rea is a common hypercyclic family on X.
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First common hypercyclicity results (d = 1, 2)

Theorem (Abakumov&Gordon (2003), Peris (2000/2001))

For X = co(N) or £,(N),1 < p < oo, the family (e* B)xo has a
common hypercyclic vector. (Even a Gs-dense set of them!)

Borichev’s example
For any A C Ri with positive Lebesgue measure, (e”B x €¥B) (5 y)ea
has no common hypercyclic vector on ¢ (N) x ¢1(N).

These operators fall in the category of maps satisfying the following.

» There exists a dense subset D C X on which each T} has a right
inverse Sy : D — X.
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First common hypercyclicity results (d = 1)

Theorem (Costakis and Sambarino (2004))

Assume that, for each v € D and each compact interval K C A, the
following properties hold true, where A\, u € K.

(1) There ezist k € N and a summable sequence of positive numbers
(ck)k such that

> || TS (v)|| < ek whenever n € Nk > k and pu < A;
> || TSETF(v)|| < cx whenever n € Nyk >k and A < p.

(2) Given n > 0, one can find T > 0 such that, for alln > 1,

0<pu—A<T = |T{S;(v) — o[ <n.

T
n

Then Nyep HO(Ty) is a Gs-dense subset of X.

>>> We call this the CS-Criterion. <<
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First common hypercyclicity results (d > 1)

Theorem (Basic criterion [3])

Assume the following. For each compact K C A, each pair u,v € D
and each open neighborhood O of the origing, one can find parameters
A1y Aq € A, sets of parameters Ay, ..., Ay C A, with

X € Aj,i=1,...,q, and integers nq,...,ng € N, such that

q
1) UAiDK;
=1
q
(i) Vi=1,..,q, YA € A; : Z ) €0 and 32, Ty S\ (v) € O;
(iil) Vi=1,...,q, VA € A; : T;“( ye O

(iv) Vi=1,..,¢, VA € A; : T\ S (u) —u € O.
Then (yep HCO(Ty) is a dense G5 subset of X.
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Sketch of CS-Criterion == Basic Criterion

Let K = [a,b]. Conditions (ii) and (iii) from the Basic Criterion come
from condition (1) of CS-Criterion. Condition (iv) follows from (2) if
we define n; = ¢N and discretize K by a partition of the form:

A
T T S S
T 9 9 T T T T L
“ ?x “x A; b
X N

Since a partition is a covering, condition (i) follows and the proof is
complete. |

>>> Note that n; = iN is the absolute best we can do! <k
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Families of products of weighted shifts

The family of hypercyclic Rolewicz operators (e* B)xso can be
regarded as a family of weighted backward shifts (B, (z))z>0, where

wy(z)wa(x) -+ wy(x) = e%e” - - e” = exp(an).

n times

Let us concentrate ourselves on families of weights of the form

wi(x)we () - - - wy(z) = exp(zn®), « € (0,1].
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We are interested in the 2-dimensional case. Let A C Rf_ compact and
T\ = Bw(:r) X Bw(y)a VA= (Z‘,y) € Aa
acting on X = £,(N),p € [1,400) or X = ¢y(N).

In order to apply the basic criterion, we we want:
> to cover A, say by squares Aq,...Ag;
> to tag these squares, say by Ai,..., Ag;
> to associate them to powers n; < --- < n,.

We write these tags in the form \; = (z;,y;).
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“Jump” constraints

Verifying the basic criterion can be very tricky! When you try to
verify condition (ii), you fix i € {1,...,¢} and you find

q
. 1
Z)iz' ot : *1(,0) ~ o 6"7_"1’
Z#Z_ BianFue) jzm exp((zj — mi)n$ + wi(nj —ng)*)

and another symmetrical condition for the second coordinate. Hence,
for this to be small, we need at least, for all 1 <i < j <g,

(j —w)nf +xi(n; —ny)* >0 and (y; —yi)ng +yi(nj; —ny)* > 0.

This is a multi-dimensional difficulty. Either z; < z; or y; < y; with
J > is called a “backward jump”. They cannot be avoided.

Note that we can rewrite these constraints into something like

1A = Ailloo < DM, for some D > 0.
n-
J
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Almost there

Theorem (Bayart, Menet, FCJr, 2022)
For any square A C R2 (and X, (w,(z))z>0 as before),

1
a < 5 - n HO(Bw(w) X Bw(y)) + g,
A€A
1
o> 5 - m HC(Bw(I) X Bw(y)) = .

AEA

(This is a consequence of a generalized version of the CS-Criterion).

The limit case o = % corresponds to the weights

wi(@) -~ wn(2) = explaey/n).
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Ideal bi-dimensional CS-Criterion

Theorem (bi-dimensional CS-Criterion)

Assume that there is D > 0 such that, for each uw € D and each
compact square K, the following properties hold true, where A, u € K.

(1) There ezist k € N and a summable sequence of positive numbers
ce)i such that, whenever |[A — p|loo < Dy/ -2, n,k € Nk > &,
n+k
HT}}"’kSﬁuH < ¢ and HT/{LSLH'kuH < ¢p.
(2) Given n >0, there is T > 0 such that, for alln > 1,

A —pl < % = HT}\LSZu —ul| <.

Then Nyep HO(Ty) is a Gs-dense subset of X.
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A covering game

We would get a perfect generalization of the CS-Criterion if the
sequence of powers (n;); could be taken as n; = iN.

One can think of this as a covering game: we are given initial values

7> 0and N € N and we have to conveniently cover our parameter set
T T T

by squares of sides TN AN AN and so on.

How to organize these squares is the difficult part of the process.
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There are multiple ways of organizing the pieces

mate (IR e 72 :

We can also consider a canonical dyadic covering, that is, by 4™
squares of side 1/2™. There are many ways of ordering this covering.

A1z A1y A Ase
Ag Ao Aur A2
As Ag A7 Ag
A Ay A3 Ay

(1) impossible

Mg Ais Ay Agg
Ag Ao Ann Are
As A7 Ag As
A Ay A3 Ay

(2) impossible

Mg A1s Az Ang
A1z Mg Ao Ago
Ay A3 As A;
A Ay A5 Ag

(3) ok for o < 1/2
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A new approach

Let us explain the method for a simple case: \/LN = % We aim to
3 1 I T T T
cover a unit square by square pieces of side TN AN AN
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A new approach: using pseudo-Hilbert curves

Let us explain the method for a simple case: \/Lﬁ = % We aim to
3 1 I T T T
cover a unit square by square pieces of side TN AN AN

U

N\ /T
e
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A covering game: round 1

Value used:
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M\
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A covering game: round 1

Value used:

=R
| =

[NoR

2
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A covering game: round 1

Value used:

=R
| =

[NoR

2

Round 1: victory!
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A covering game: round 2

Values used:

T T T 1

> > =
V2N~ V3N~ VAN 22

1

22
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A covering game: round 2

Values used:

T T T 1

> > =
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1

22
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A covering game: round 2

1\

Values used:
T S T < T i
V2N = V3N~ VAN 22
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A covering game: round 3

Values used:

T T ST T i
VI6N 23

1
23
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A covering game: round 3

f\ f\ Values used:
MU s sk
GG

™

o

>

/d /N :

V| IT
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A covering game: round 3

Round 3: victory!

Values used:

T T ST T i
VI6N 23

1
23
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A covering game: round 4

Values used:

T T 1
V17N V6AN 24

2

TV
to make 48=3x42 pieces

EEEEEEEEEEEN
EEEEEEEEEEER
EEEEEEEEEEER
EEEEEEEEEEEE
1

2
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A covering game: round 4

NEN
A\ ,
) Id
\\
=0
D
N
— 1]
AN A A
J 1V VAR
D
Ed A
AN U 1TV
C_\\ \\/r\
D ]
A IATHIA
\NE N_ UV [T\

Values used:

T T 1
>...>—:

VITN V6IN 2%

2

TV
to make 48=3x42 pieces

EEEEEEEEEEEN
EEEEEEEEEEER
EEEEEEEEEEER
EEEEEEEEEEEE
1

2
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A covering game:

round 4

Values used:
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A covering game: round 4

Round 4: victory!

Values used:
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A covering game: round 5

Values used:

T T 1

V65N V256N 20

[\

TV
to make 192=3x43 pieces
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A covering game: round 5

Values used:

T T 1

V65N V256N 20

TV
to make 192=3x43 pieces

Round 5: victory. The game is over.
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How the enumeration of our covering looks like

MM
/N UYT])
ARSI
DRAN T
d \C\\)
PAEAEN
Nl
DT N |
PIATGADT P TN
S L)
AENE V[V
—‘F(JKJ

[IEN
=1 —
] [IF=NF=NI

Y]]

Ordering of A1, As, ..., Aosg such that K C Ufif; A;
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Sierpinski gasket

Obtaining the Sierpinski gasket through triangles
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Sierpinski gasket

¥

Obtaining the Sierpinski gasket through squares
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Dimension of the gasket

Let T be a unitary Sierpinski gasket inside [0, +00)2. The similarity
dimension (= Hausdorff dimension) of the gasket is dimy = ﬁgg’ Up
to now, we knew that the weights of the form

() wy (x) = exp(en)
induce a bi-dimensional family (Bw(m) X Bw(y))(z J)er with a common

3 1 _ log2
hypercyclic vector whenever o < TmuT = log3”
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Applying the new approach to the gasket

The limit case we aim to address is @ = ey = izig
Tog 2

Once again, we are given values 7 > 0, N € N and we want to
construct a covering by squares of sides

T T T

log2 log2 7 log2 7 °**

NTog3 (QN) Tog 3 (3]\/') Tog 3

to make pieces for our covering.
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The covering game of the gasket: grouping method
Again, let us consider the simple case

T 1

log 2

NlogS

N
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The covering game of the gasket: grouping method
Again, let us consider the simple case
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The covering game of the gasket: grouping method
Again, let us consider the simple case

T 1
le2 — o°

N10g3
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The covering game of the gasket: grouping method
Again, let us consider the simple case

T 1

log 2

NlogB

|
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The covering game of the gasket: round 1

Value used:

EF
09
Wl
N —
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A covering game: round 1
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The covering game of the gasket: round 2

Values used:

T T 1

>
(2N)©es  (3N)wees 27
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The covering game of the gasket: round 3

Values used:

T T
e > = —
(4N)1oe5 (ON)@es 2P

1
23
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The covering game of the gasket: round 3

Values used:

T T 1
gz > > log2 — 03

(4N)Tozs (ON)tes  2°

—
2=
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A covering game: round 3
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A covering game: round 3

Values used:

1
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Round 3: victory!
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The covering game of the gasket: round 4

Values used:
T T 1

(10N)

HEEEEEN
HEEEEEN]:
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Values used:

T T 1
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A covering game: round 4

Values used:

T T 1
(10N) 165 (27N)gs 23

HEEEEEN
HEEEEEN]:

Round 4: victory! The game is over.
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How the enumeration of our covering looks like

Ordering of Ay, Ag, ..., Ag7 such that T' C U7, A,
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Koch snowflake

VAN 1 SN o
5t B U 5

Figure : The von Koch curve forms the well known Koch snowflake. It has

4 similarities and contraction ration % Its has Hausdorff dimension izigg

We can apply our method by making groups of 3 patches of parts.
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Minkowski sausage

Tl L Y
P Al Al

Figure : The Minkowski sasusage has 8 similarities with i contraction
ration. Its Hausdorff dimension is 1.5.

We can apply our method by making groups of 7 patches of parts.
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A new concept of dimension?

Definition. Let d > 1 and A C R? be compact. We say that A has
homogeneously ordered box dimension at most vy € (0, d) if there exist
r € [2,+00[, p > 0 and, for all m > 1, a compact covering (A;)icrm of
A satisfying the following.

(i) For all i e I'™,

: I A\™
diam(A;) < p(ﬂ/v) .

(ii) For all i = (i1, ..., i, imi1) € IMTL,

A CA

7:1y~~7im+1 i17'~~;inL'

(iii) For all i = (i1,...,4m) € I/* and all j € {2,...,r},
Aijoi,NA 1 # D

The homogeneously ordered box dimension of A (HBD® for short) is
the smallest number 7 such that A has homogeneously ordered box
dimension at most v. We will denote this number by dim§, 5(A).
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A full generalization of the CS-criterion

Theorem (Generalized Costakis-Sambarino Criterion)

Let d € N and v > 0 and let A be a compact subset of R? having
homogeneously ordered box dimension at most . Assume that there is
D > 0 such that, for all w € D and all compact K C A, the following
properties hold true, where all parameters A, i belong to K.

(1) There ezist k € N and a sequence of positive numbers (cr)ken
1/
such that Y ;- ¢ < 0o and, whenever || — pif| s < Dm,
with n,k € Ny and k > k, we have

|T5tespul| < e and ||TRSE )| < e
(2) Given n >0, one can find T > 0 such that, for alln € N,

= HT;LSZ“ —ul| <n.

-
A= pllo < A

Then (Nyep HC(T)) is a Gs-dense subset of X.
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Applications
Let d > 1 and I' C R? compact. We write A = (z1,...,z4) for any
A € R%. Consider a € (0,1/d] and a family (B (z,) ¥ 4.xB
induced by weights (w(w))x g Satisfying

w(za)) xer

wy(x) - wq(x) = exp(zn®).

Theorem
If T has HBO® at most v < d and 0 < a < 1/, then

ﬂ HC(Bw(zl) X A X Bw(md)) #+ .
Ael

Corollary
IfT is a B-Hélder curve and 0 < a < 3, then

ﬂ HC(BU,(“) X A X Bw(xd)) #+ o.
PYSI
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IFS, GIFS and optimal parametrizations

Construction of the Sierpinski carpet.
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IFS, GIFS and optimal parametrizations

Ordering the carpet (Rao and Zhang, 2016).
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Some open questions
> 7}7(;)2 =400 — ﬂz7y>0 HC(Bw(z) X Bw(y)) #+ o7
e For C C R the Cantor dust with dissection ratio 1/4,

(| ¢"Bxe'B+#0a?
(z,y)ec

e Can we, more generally, generalize our result for totally
disconnected fractals?

e Can we adapt optimally our technique to self-similar fractals with
non-uniform contraction ratio?

e For 7 C Ri the 1-dimensional Takagi curve,

m e*B x eYB # @7
(z,y)ET
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