Self-similar fractals and common hypercyclicity Anual meeting of the FNRS Group - Functional Analysis Département de Mathématique, Université de Mons

Fernando Costa Jr.

Laboratoire de Mathématiques d'Avignon Avignon Université

June 13, 2023

Hypercyclicity and common hypercyclicity

Let X be a separable Banach space and $T: X \to X$ be linear and continuous (= operator).

We say that $x \in X$ is a **hypercyclic vector** for T when its orbit $Orb(x,T) := \{T^nx : n \geq 0\}$ is dense in X. If such a vector exists we say that T is a **hypercyclic operator** on X. The set of hypercyclic vectors for an operator T is denoted by HC(T).

Let $d \geq 1$, let $\Lambda \subset \mathbb{R}^d$ be compact and let $(T_{\lambda})_{{\lambda} \in \Lambda}$ be a family of operators acting on X such that the map $(\lambda, x) \mapsto T_{\lambda}(x)$ is continuous (= continuous family).

We say that $x \in X$ is a **common hypercyclic vector** for $(T_{\lambda})_{{\lambda} \in \Lambda}$ when $x \in HC(T_{\lambda})$ for all ${\lambda} \in \Lambda$. If such a vector exists we say that $(T_{\lambda})_{{\lambda} \in \Lambda}$ is a **common hypercyclic family** on X.

First common hypercyclicity results (d = 1, 2)

Theorem (Abakumov&Gordon (2003), Peris (2000/2001))

For $X = c_0(\mathbb{N})$ or $\ell_p(\mathbb{N}), 1 \leq p < \infty$, the family $(e^{\lambda}B)_{\lambda>0}$ has a common hypercyclic vector. (Even a G_{δ} -dense set of them!)

Borichev's example

For any $\Lambda \subset \mathbb{R}^2_+$ with positive Lebesgue measure, $(e^x B \times e^y B)_{(x,y) \in \Lambda}$ has no common hypercyclic vector on $\ell_1(\mathbb{N}) \times \ell_1(\mathbb{N})$.

These operators fall in the category of maps satisfying the following.

▶ There exists a dense subset $\mathcal{D} \subset X$ on which each T_{λ} has a right inverse $S_{\lambda} : \mathcal{D} \to X$.

First common hypercyclicity results (d = 1)

Theorem (Costakis and Sambarino (2004))

Assume that, for each $v \in \mathcal{D}$ and each compact interval $K \subset \Lambda$, the following properties hold true, where $\lambda, \mu \in K$.

- (1) There exist $\kappa \in \mathbb{N}$ and a summable sequence of positive numbers $(c_k)_k$ such that
 - $||T_{\lambda}^{n+k}S_{\mu}^{n}(v)|| \leq c_{k} \text{ whenever } n \in \mathbb{N}, k \geq \kappa \text{ and } \mu \leq \lambda;$
 - $\|T_{\lambda}^{n} S_{\mu}^{n+k}(v)\| \leq c_{k} \text{ whenever } n \in \mathbb{N}, k \geq \kappa \text{ and } \lambda \leq \mu.$
- (2) Given $\eta > 0$, one can find $\tau > 0$ such that, for all $n \ge 1$,

$$0 \le \mu - \lambda \le \frac{\tau}{n} \implies \|T_{\lambda}^n S_{\mu}^n(v) - v\| < \eta.$$

Then $\bigcap_{\lambda \in \Lambda} HC(T_{\lambda})$ is a G_{δ} -dense subset of X.

>>> We call this the CS-Criterion. <<<

First common hypercyclicity results $(d \ge 1)$

Theorem (Basic criterion [3])

Assume the following. For each compact $K \subset \Lambda$, each pair $u, v \in \mathcal{D}$ and each open neighborhood O of the origing, one can find parameters $\lambda_1, ..., \lambda_q \in \Lambda$, sets of parameters $\Lambda_1, ..., \Lambda_q \subset \Lambda$, with $\lambda_i \in \Lambda_i, i = 1, ..., q$, and integers $n_1, ..., n_q \in \mathbb{N}$, such that

(i)
$$\bigcup_{i=1}^{q} \Lambda_i \supset K;$$

(ii)
$$\forall i=1,...,q, \forall \lambda \in \Lambda_i: \sum_{j=1}^q S^{n_j}_{\lambda_j}(v) \in O \ and \sum_{j\neq i} T^{n_i}_{\lambda} S^{n_j}_{\lambda_j}(v) \in O;$$

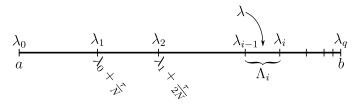
(iii)
$$\forall i = 1, ..., q, \forall \lambda \in \Lambda_i : T_{\lambda}^{n_i}(u) \in O$$

(iv)
$$\forall i = 1, ..., q, \forall \lambda \in \Lambda_i : T_{\lambda}^{n_i} S_{\lambda_i}^{n_i}(u) - u \in O.$$

Then $\bigcap_{\lambda \in \Lambda} HC(T_{\lambda})$ is a dense G_{δ} subset of X.

Sketch of CS-Criterion \implies Basic Criterion

Let K = [a, b]. Conditions (ii) and (iii) from the Basic Criterion come from condition (1) of CS-Criterion. Condition (iv) follows from (2) if we define $n_i = iN$ and discretize K by a partition of the form:



Since a partition is a covering, condition (i) follows and the proof is complete.

>>> Note that $n_i = iN$ is the absolute best we can do! <<<

Families of products of weighted shifts

The family of hypercyclic Rolewicz operators $(e^{\lambda}B)_{\lambda>0}$ can be regarded as a family of weighted backward shifts $(B_{w(x)})_{x>0}$, where

$$w_1(x)w_2(x)\cdots w_n(x) = \underbrace{e^x e^x \cdots e^x}_{n \text{ times}} = \exp(xn).$$

Let us concentrate ourselves on families of weights of the form

$$w_1(x)w_2(x)\cdots w_n(x) = \exp(xn^{\alpha}), \quad \alpha \in (0,1].$$

We are interested in the 2-dimensional case. Let $\Lambda \subset \mathbb{R}^2_+$ compact and

$$T_{\lambda} = B_{w(x)} \times B_{w(y)}, \quad \forall \lambda = (x, y) \in \Lambda,$$

acting on
$$X = \ell_p(\mathbb{N}), p \in [1, +\infty)$$
 or $X = c_0(\mathbb{N})$.

In order to apply the basic criterion, we we want:

- to cover Λ , say by squares $\Lambda_1, \ldots \Lambda_q$;
- ▶ to tag these squares, say by $\lambda_1, \ldots, \lambda_q$;
- ▶ to associate them to powers $n_1 < \cdots < n_q$.

We write these tags in the form $\lambda_j = (x_j, y_j)$.

"Jump" constraints

Verifying the basic criterion can be very tricky! When you try to verify condition (ii), you fix $i \in \{1, ..., q\}$ and you find

$$\sum_{j \neq i} B_{w(x_i)}^{n_i} F_{w(x_j)^{-1}}^{n_j}(v) \approx \sum_{j=i+1}^q \frac{1}{\exp((x_j - x_i)n_j^{\alpha} + x_i(n_j - n_i)^{\alpha})} e_{n_j - n_i},$$

and another symmetrical condition for the second coordinate. Hence, for this to be small, we need at least, for all $1 \le i < j \le q$,

$$(x_j - x_i)n_j^{\alpha} + x_i(n_j - n_i)^{\alpha} > 0$$
 and $(y_j - y_i)n_j^{\alpha} + y_i(n_j - n_i)^{\alpha} > 0$.

This is a multi-dimensional difficulty. Either $x_j < x_i$ or $y_j < y_i$ with j > i is called a "backward jump". They cannot be avoided.

Note that we can rewrite these constraints into something like

$$\|\lambda_j - \lambda_i\|_{\infty} \le D \frac{(n_j - n_i)^{\alpha}}{n_j^{\alpha}}, \text{ for some } D > 0.$$

Almost there

Theorem (Bayart, Menet, FCJr, 2022)

For any square $\Lambda \subset \mathbb{R}^2_+$ (and X, $(w_n(x))_{x>0}$ as before),

$$\alpha < \frac{1}{2} \implies \bigcap_{\lambda \in \Lambda} HC(B_{w(x)} \times B_{w(y)}) \neq \varnothing,$$

$$\alpha > \frac{1}{2} \implies \bigcap_{\lambda \in \Lambda} HC(B_{w(x)} \times B_{w(y)}) = \varnothing.$$

(This is a consequence of a generalized version of the CS-Criterion).

The limit case $\alpha = \frac{1}{2}$ corresponds to the weights

$$w_1(x)\cdots w_n(x) = \exp(x\sqrt{n}).$$

Ideal bi-dimensional CS-Criterion

Theorem (bi-dimensional CS-Criterion)

Assume that there is D > 0 such that, for each $u \in \mathcal{D}$ and each compact square K, the following properties hold true, where $\lambda, \mu \in K$.

(1) There exist $\kappa \in \mathbb{N}$ and a summable sequence of positive numbers $(c_k)_k$ such that, whenever $\|\lambda - \mu\|_{\infty} \leq D\sqrt{\frac{k}{n+k}}$, $n, k \in \mathbb{N}, k \geq \kappa$,

$$||T_{\lambda}^{n+k}S_{\mu}^{n}u|| \le c_k$$
 and $||T_{\lambda}^{n}S_{\mu}^{n+k}u|| \le c_k$.

(2) Given $\eta > 0$, there is $\tau > 0$ such that, for all $n \ge 1$,

$$\|\lambda - \mu\| \le \frac{\tau}{\sqrt{n}} \implies \|T_{\lambda}^n S_{\mu}^n u - u\| < \eta.$$

Then $\bigcap_{\lambda \in \Lambda} HC(T_{\lambda})$ is a G_{δ} -dense subset of X.

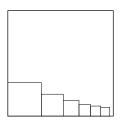
A covering game

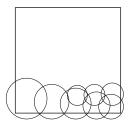
We would get a perfect generalization of the CS-Criterion if the sequence of powers $(n_i)_i$ could be taken as $n_i = iN$.

One can think of this as a covering game: we are given initial values $\tau > 0$ and $N \in \mathbb{N}$ and we have to conveniently cover our parameter set by squares of sides $\frac{\tau}{\sqrt{N}}, \frac{\tau}{\sqrt{2N}}, \frac{\tau}{\sqrt{3N}}, \dots$ and so on.

How to organize these squares is the difficult part of the process.

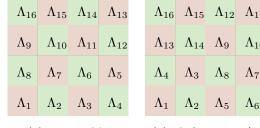
There are multiple ways of organizing the pieces

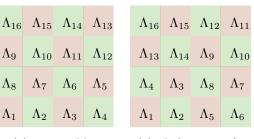




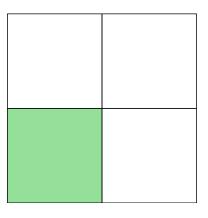
We can also consider a canonical dyadic covering, that is, by 4^m squares of side $1/2^m$. There are many ways of ordering this covering.

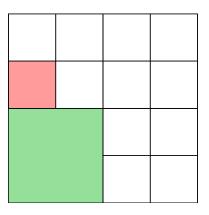
Λ_{13}	Λ_{14}	Λ_{15}	Λ_{16}
Λ_9	Λ_{10}	Λ_{11}	Λ_{12}
Λ_5	Λ_6	Λ_7	Λ_8
Λ_1	Λ_2	Λ_3	Λ_4

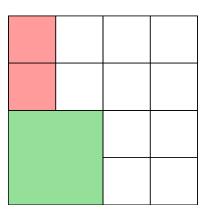


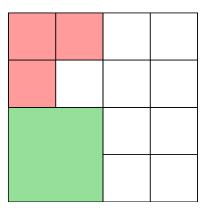


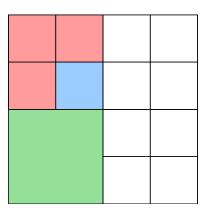
(3) ok for
$$\alpha < 1/2$$

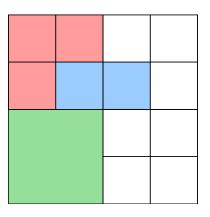


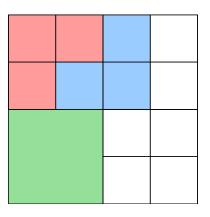


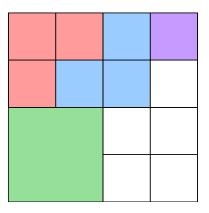


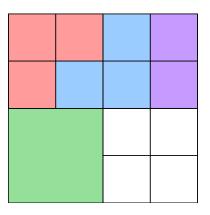


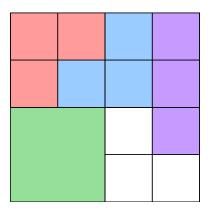


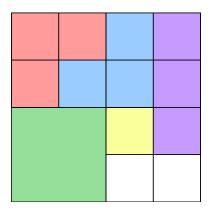


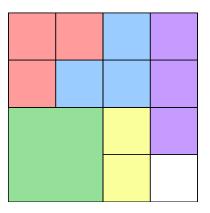


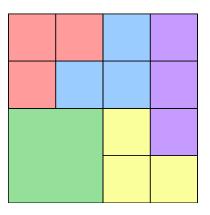




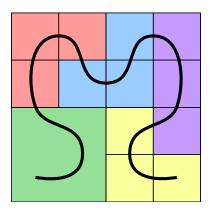






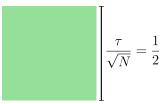


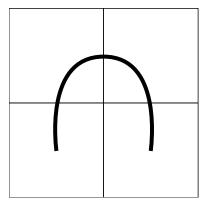
A new approach: using pseudo-Hilbert curves



Value used:

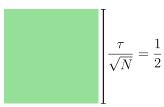
$$\frac{\tau}{\sqrt{N}} = \frac{1}{2}$$

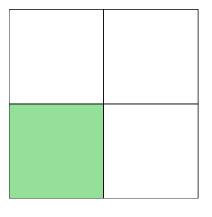




Value used:

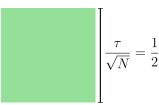
$$\frac{\tau}{\sqrt{N}} = \frac{1}{2}$$

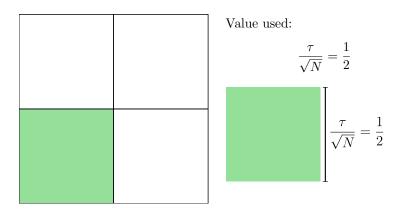




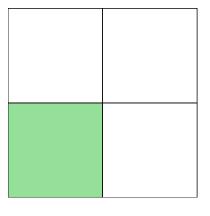
Value used:

$$\frac{\tau}{\sqrt{N}} = \frac{1}{2}$$

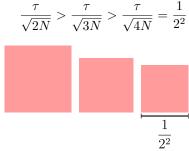


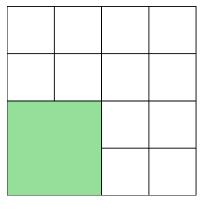


Round 1: victory!

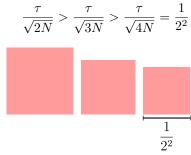


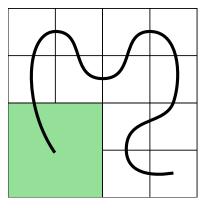
Values used:



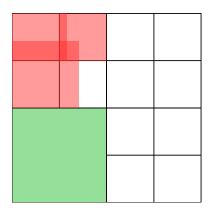


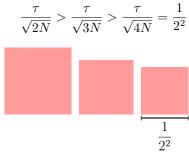
Values used:

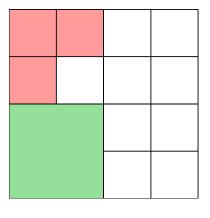


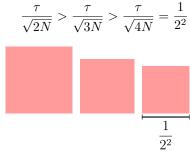


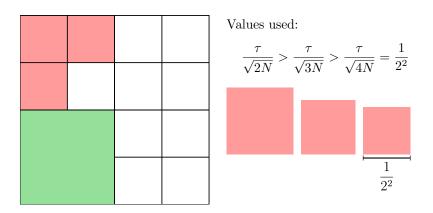




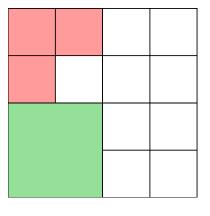




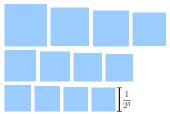


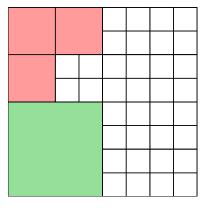


Round 2: victory!

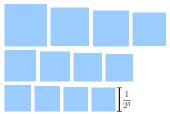


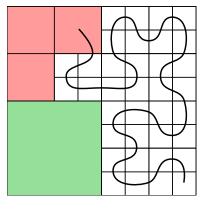
$$\frac{\tau}{\sqrt{5N}} > \frac{\tau}{\sqrt{6N}} > \dots > \frac{\tau}{\sqrt{16N}} = \frac{1}{2^3}$$



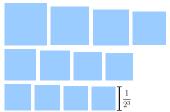


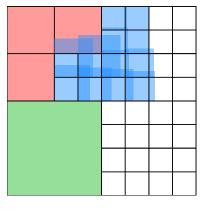
$$\frac{\tau}{\sqrt{5N}} > \frac{\tau}{\sqrt{6N}} > \dots > \frac{\tau}{\sqrt{16N}} = \frac{1}{2^3}$$



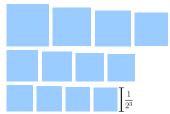


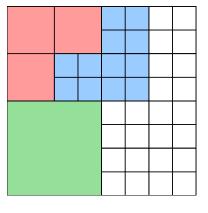
$$\frac{\tau}{\sqrt{5N}} > \frac{\tau}{\sqrt{6N}} > \dots > \frac{\tau}{\sqrt{16N}} = \frac{1}{2^3}$$



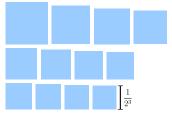


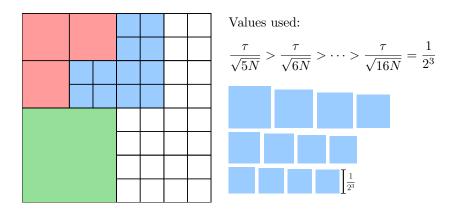
$$\frac{\tau}{\sqrt{5N}} > \frac{\tau}{\sqrt{6N}} > \dots > \frac{\tau}{\sqrt{16N}} = \frac{1}{2^3}$$



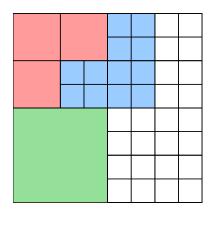


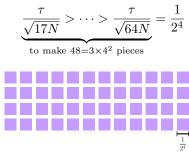
$$\frac{\tau}{\sqrt{5N}} > \frac{\tau}{\sqrt{6N}} > \dots > \frac{\tau}{\sqrt{16N}} = \frac{1}{2^3}$$

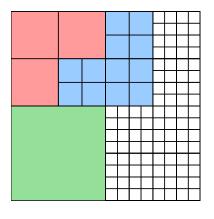


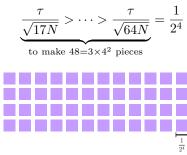


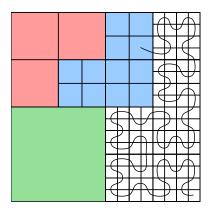
Round 3: victory!

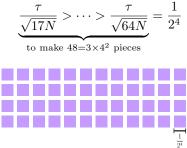


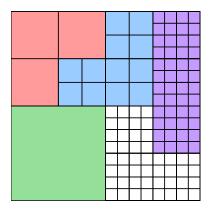


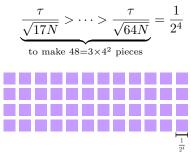


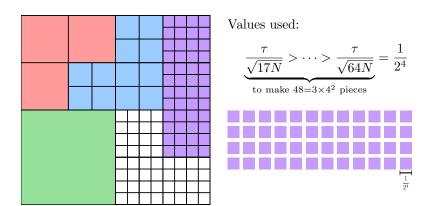




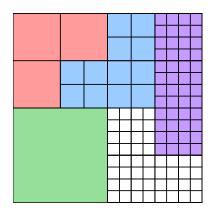


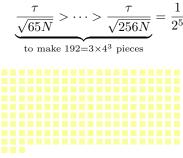


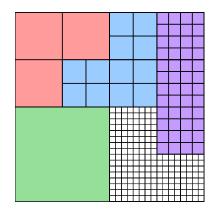


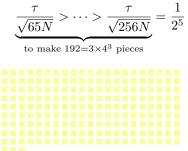


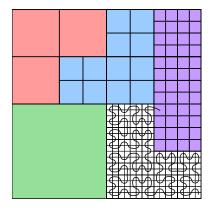
Round 4: victory!

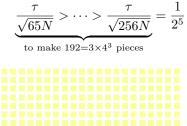


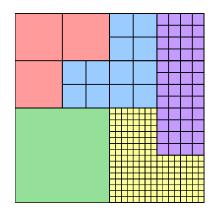


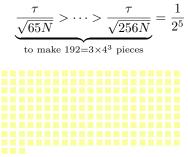


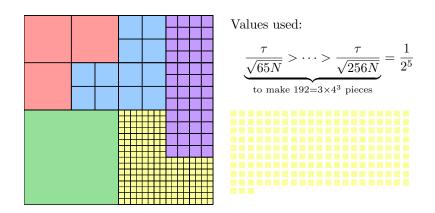






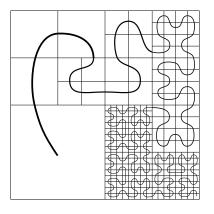






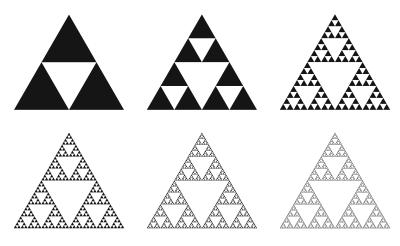
Round 5: victory. The game is over.

How the enumeration of our covering looks like



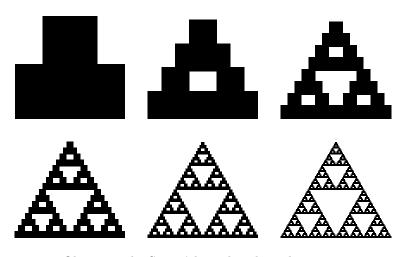
Ordering of $\Lambda_1, \Lambda_2, \dots, \Lambda_{256}$ such that $K \subset \bigcup_{i=1}^{256} \Lambda_i$

Sierpiński gasket



Obtaining the Sierpiński gasket through triangles

Sierpiński gasket



Obtaining the Sierpiński gasket through squares

Dimension of the gasket

Let Γ be a unitary Sierpiński gasket inside $[0, +\infty)^2$. The similarity dimension (= Hausdorff dimension) of the gasket is $\dim_{\mathcal{H}} = \frac{\log 3}{\log 2}$. Up to now, we knew that the weights of the form

$$w_1(x)\cdots w_n(x) = \exp(xn^{\alpha})$$

induce a bi-dimensional family $(B_{w(x)} \times B_{w(y)})_{(x,y) \in \Gamma}$ with a common hypercyclic vector whenever $\alpha < \frac{1}{\dim_{\mathcal{H}} \Gamma} = \frac{\log 2}{\log 3}$.

Applying the new approach to the gasket

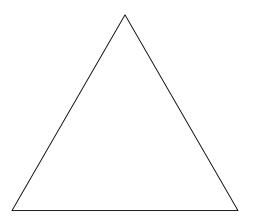
The limit case we aim to address is $\alpha = \frac{1}{\frac{\log 3}{\log 2}} = \frac{\log 2}{\log 3}$.

Once again, we are given values $\tau > 0, N \in \mathbb{N}$ and we want to construct a covering by squares of sides

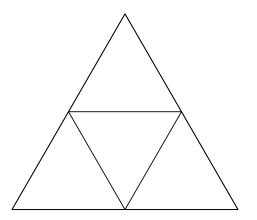
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}}, \frac{\tau}{(2N)^{\frac{\log 2}{\log 3}}}, \frac{\tau}{(3N)^{\frac{\log 2}{\log 3}}}, \dots$$

to make pieces for our covering.

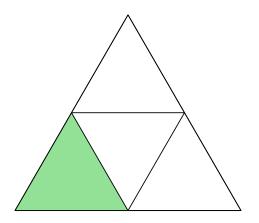
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



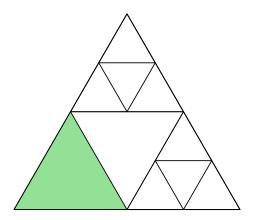
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



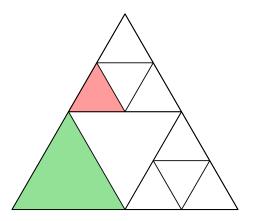
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



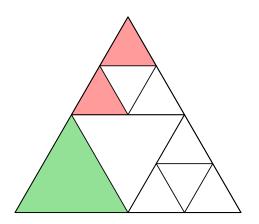
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



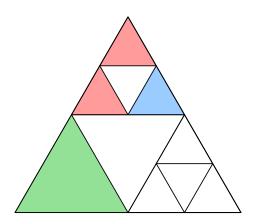
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



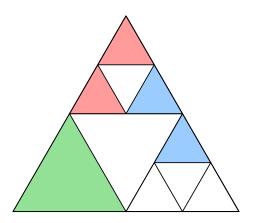
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



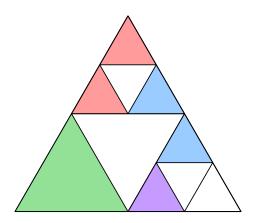
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



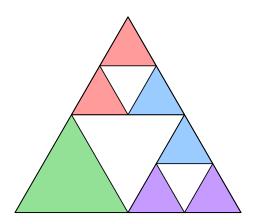
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$



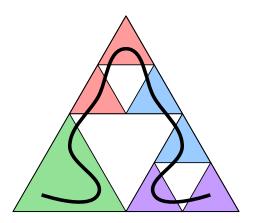
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$

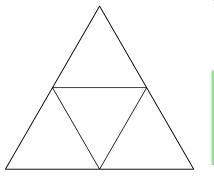


$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$

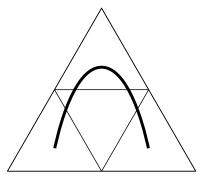


$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}.$$

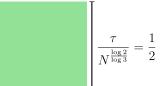


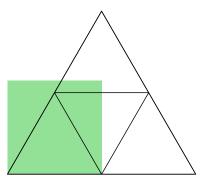


$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}$$

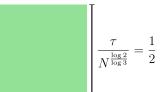


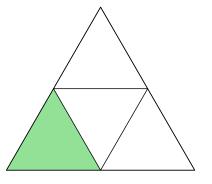
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}$$



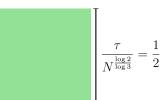


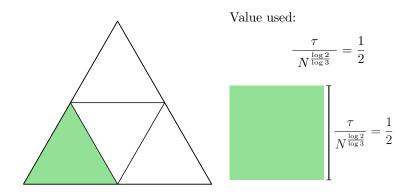
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}$$



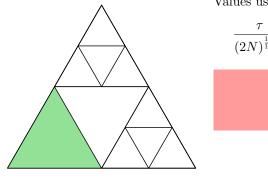


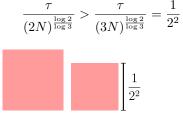
$$\frac{\tau}{N^{\frac{\log 2}{\log 3}}} = \frac{1}{2}$$

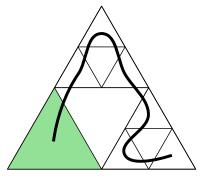




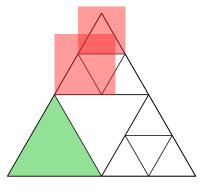
Round 1: victory!



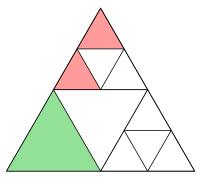




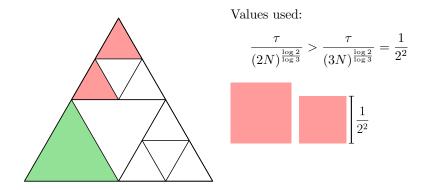
$$\frac{\tau}{(2N)^{\frac{\log 2}{\log 3}}} > \frac{\tau}{(3N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^2}$$



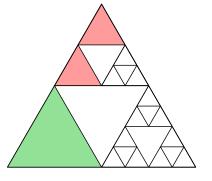
$$\frac{\tau}{(2N)^{\frac{\log 2}{\log 3}}} > \frac{\tau}{(3N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^2}$$



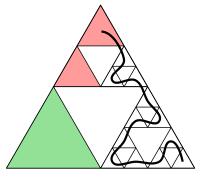
$$\frac{\tau}{(2N)^{\frac{\log 2}{\log 3}}} > \frac{\tau}{(3N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^2}$$



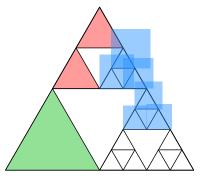
Round 2: victory!



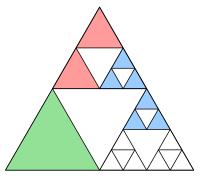
$$\frac{\tau}{(4N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(9N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



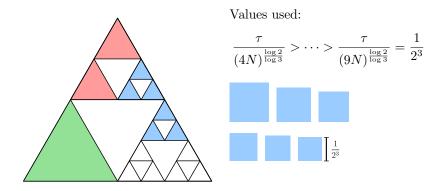
$$\frac{\tau}{(4N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(9N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



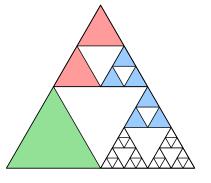
$$\frac{\tau}{(4N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(9N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



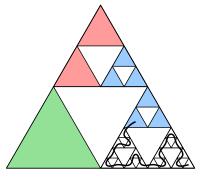
$$\frac{\tau}{(4N)^{\frac{\log 2}{\log 3}}} > \cdots > \frac{\tau}{(9N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



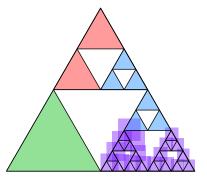
Round 3: victory!



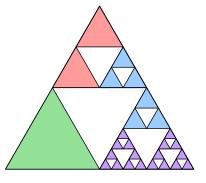
$$\frac{\tau}{(10N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(27N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



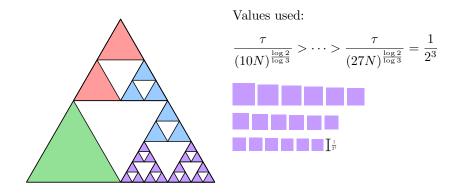
$$\frac{\tau}{(10N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(27N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



$$\frac{\tau}{(10N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(27N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$

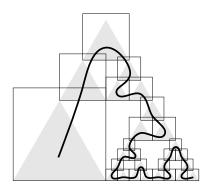


$$\frac{\tau}{(10N)^{\frac{\log 2}{\log 3}}} > \dots > \frac{\tau}{(27N)^{\frac{\log 2}{\log 3}}} = \frac{1}{2^3}$$



Round 4: victory! The game is over.

How the enumeration of our covering looks like



Ordering of $\Lambda_1, \Lambda_2, \ldots, \Lambda_{27}$ such that $\Gamma \subset \bigcup_{i=1}^{27} \Lambda_i$

Koch snowflake

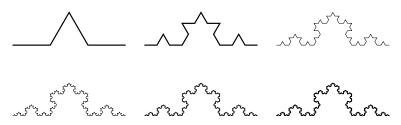


Figure : The von Koch curve forms the well known Koch snowflake. It has 4 similarities and contraction ration $\frac{1}{3}$. Its has Hausdorff dimension $\frac{\log(4)}{\log(3)}$.

We can apply our method by making groups of 3 patches of parts.

Minkowski sausage

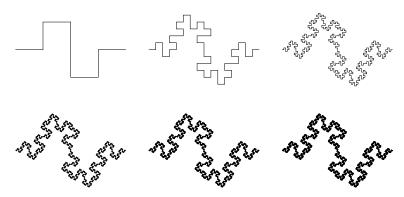


Figure : The Minkowski sasusage has 8 similarities with $\frac{1}{4}$ contraction ration. Its Hausdorff dimension is 1.5.

We can apply our method by making groups of 7 patches of parts.

A new concept of dimension?

Definition. Let $d \geq 1$ and $\Lambda \subset \mathbb{R}^d$ be compact. We say that Λ has homogeneously ordered box dimension at most $\gamma \in (0, d]$ if there exist $r \in [2, +\infty[$, $\rho > 0$ and, for all $m \geq 1$, a compact covering $(\Lambda_{\mathbf{i}})_{\mathbf{i} \in I_r^m}$ of Λ satisfying the following.

(i) For all $\mathbf{i} \in I_r^m$,

$$\operatorname{diam}(\Lambda_{\mathbf{i}}) \le \rho \left(\frac{1}{r^{1/\gamma}}\right)^m.$$

(ii) For all $\mathbf{i} = (i_1, ..., i_m, i_{m+1}) \in I_r^{m+1}$,

$$\Lambda_{i_1,\ldots,i_{m+1}} \subset \Lambda_{i_1,\ldots,i_m}.$$

(iii) For all $\mathbf{i} = (i_1, ..., i_m) \in I_r^m$ and all $j \in \{2, ..., r\}$,

$$\Lambda_{\mathbf{i},j-1,r} \cap \Lambda_{\mathbf{i},j,1} \neq \emptyset.$$

The homogeneously ordered box dimension of Λ (HBD° for short) is the smallest number γ such that Λ has homogeneously ordered box dimension at most γ . We will denote this number by $\dim_{HB}^{\circ}(\Lambda)$.

A full generalization of the CS-criterion

Theorem (Generalized Costakis-Sambarino Criterion)

Let $d \in \mathbb{N}$ and $\gamma > 0$ and let Λ be a compact subset of \mathbb{R}^d having homogeneously ordered box dimension at most γ . Assume that there is D > 0 such that, for all $u \in \mathcal{D}$ and all compact $K \subset \Lambda$, the following properties hold true, where all parameters λ, μ belong to K.

(1) There exist $\kappa \in \mathbb{N}$ and a sequence of positive numbers $(c_k)_{k \in \mathbb{N}}$ such that $\sum_{k=\kappa}^{\infty} c_k < \infty$ and, whenever $\|\lambda - \mu\|_{\infty} \leq D \frac{k^{1/\gamma}}{(n+k)^{1/\gamma}}$, with $n, k \in \mathbb{N}_0$ and $k \geq \kappa$, we have

$$||T_{\lambda}^{n+k}S_{\mu}^{n}u|| \le c_k$$
 and $||T_{\lambda}^{n}S_{\mu}^{n+k}u|| \le c_k$.

(2) Given $\eta > 0$, one can find $\tau > 0$ such that, for all $n \in \mathbb{N}$,

$$\|\lambda - \mu\|_{\infty} \le \frac{\tau}{n^{1/\gamma}} \implies \|T_{\lambda}^n S_{\mu}^n u - u\| < \eta.$$

Then $\bigcap_{\lambda \in \Lambda} HC(T_{\lambda})$ is a G_{δ} -dense subset of X.

Applications

Let $d \geq 1$ and $\Gamma \subset \mathbb{R}^d$ compact. We write $\lambda = (x_1, \dots, x_d)$ for any $\lambda \in \mathbb{R}^d$. Consider $\alpha \in (0, 1/d]$ and a family $(B_{w(x_1)} \times \cdots \times B_{w(x_d)})_{\lambda \in \Gamma}$ induced by weights $(w(x))_{x \in \mathbb{R}}$ satisfying

$$w_1(x)\cdots w_d(x) \approx \exp(xn^{\alpha}).$$

Theorem

If Γ has HBO° at most $\gamma \leq d$ and $0 < \alpha \leq 1/\gamma$, then

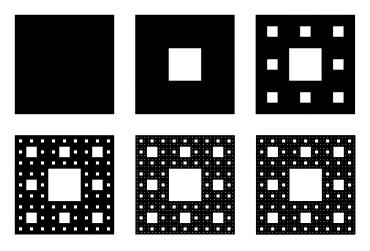
$$\bigcap_{\lambda \in \Gamma} HC(B_{w(x_1)} \times \cdots \times B_{w(x_d)}) \neq \varnothing.$$

Corollary

If Γ is a β -Hölder curve and $0 < \alpha \leq \beta$, then

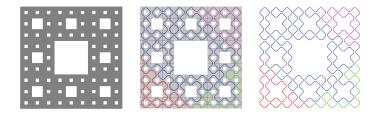
$$\bigcap_{\lambda \in \Gamma} HC(B_{w(x_1)} \times \cdots \times B_{w(x_d)}) \neq \varnothing.$$

IFS, GIFS and optimal parametrizations



Construction of the Sierpiński carpet.

IFS, GIFS and optimal parametrizations



Ordering the carpet (Rao and Zhang, 2016).

Some open questions

$$\bullet \sum \frac{1}{F(n)^2} = +\infty \implies \bigcap_{x,y>0} HC(B_{w(x)} \times B_{w(y)}) \neq \varnothing?$$

• For $\mathcal{C} \subset \mathbb{R}^2_+$ the Cantor dust with dissection ratio 1/4,

$$\bigcap_{(x,y)\in\mathcal{C}} e^x B \times e^y B \neq \varnothing?$$

- Can we, more generally, generalize our result for totally disconnected fractals?
- Can we adapt optimally our technique to self-similar fractals with non-uniform contraction ratio?
- For $\mathcal{T} \subset \mathbb{R}^2_+$ the 1-dimensional Takagi curve,

$$\bigcap_{(x,y)\in\mathcal{T}} e^x B \times e^y B \neq \varnothing?$$

References

- [1] E. Abakumov and J. Gordon. Common hypercyclic vectors for multiples of backward shift. *Journal of Functional Analysis* 200.2 (2003): 494-504.
- [2] G. Costakis and M. Sambarino. **Genericity of wild** holomorphic functions and common hypercyclic vectors. *Advances in Mathematics* 182.2 (2004): 278-306.
- [3] F. Bayart and É. Matheron. **Dynamics of linear operators**. Cambridge Tracts in Mathematics No. 179. *Cambridge university press*, 2009.
- [4] F. Bayart, F. Costa Jr. and Q. Menet. Common hypercyclic vectors and dimension of the parameter set. *Indiana University Mathematics Journal* 71.4 (2022): 1763-1795.
- [5] A. Peris. Common hypercyclic vectors for backward shifts, Operator Theory Seminar, Michigan State University (2000/01).
- [6] H. Rao and S.-Q. Zhang. **Space-filling curves of self-similar sets (I): iterated function systems with order structures.** *Nonlinearity* 29.7 (2016): 2112.