Chap. 3 Intégration.

L1S1 Portails Math-Info & Math-Physique Analyse 1

2021-22

1 Intégrale d'une fonction sur un intervalle [a, b]

1.1 Vitesse et distance

On considère un véhicule roulant à la vitesse v_1 (exprimée en $km.h^{-1}$) entre les instants (exprimés en heures) t=0 et $t=t_1$ et à la vitesse v_2 entre les instants $t=t_1$ et $t=t_1+t_2$. On se demande quelle est la distance d (exprimée en km) parcourue entre les instants t=0 et $t=t_1+t_2$.

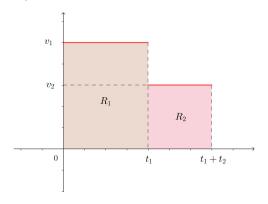
Pendant la première phase, de durée t_1 , le véhicule roule à la vitesse v_1 et parcourt donc une distance $d_1 = v_1 \times t_1$. Pendant la deuxième phase, de durée t_2 , le véhicule parcourt une distance $d_2 = v_2 \times t_2$. La distance parcourue totale est donc

$$d=v_1\times t_1+v_2\times t_2.$$

La vitesse moyenne du véhicule entre les instants 0 et $t_1 + t_2$ est

$$v_{moy} = \frac{d}{t_1 + t_2} = \frac{v_1 \times t_1 + v_2 \times t_2}{t_1 + t_2}.$$

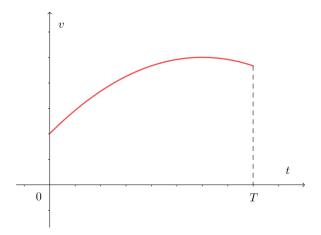
Considérons à présent la courbe représentative de la vitesse (en fonction du temps), dans le plan muni d'un repère orthonormé.



Le domaine D compris entre l'axe des abscisses et la courbe représentative de la vitesse est constitué de deux rectangles R_1 et R_2 . L'aire de R_1 est $v_1 \times t_1$ et l'aire de R_2 est $v_2 \times t_2$. On remarque que

$$Aire(D) = Aire(R_1) + Aire(R_2) = v_1 \times t_1 + v_2 \times t_2 = d.$$

Supposons à présent que la vitesse du véhicule change de manière continue entre les instants t=0 et t=T. La fonction vitesse $(t\mapsto v(t))$ est représentée par la courbe suivante.



Dans ce cas, comment peut-on déterminer la distance parcourue par le véhicule entre les instants 0 et T?

Une méthode pour estimer cette distance est de diviser l'intervalle [0, T] en n sous-intervalles de longueur T/n, en introduisant les temps intermédiaires $t_i = \frac{iT}{r}$. Notons $v_i = v(t_i)$ la vitesse à l'instant t_i .

Si n est grand, t_{i-1} est proche de t_i , et on peut considérer qu'entre les instants t_{i-1} et t_i , la vitesse reste "presque" égale à $v_i := v(t_i)$. Ainsi, la distance d_i parcourue par le véhicule entre les instants t_{i-1} et t_i est "presque" égale à $v_i \times (t_i - t_{i-1}) = v_i \times T/n$. L'erreur associée à cette approximation est petite par rapport à 1/n: $d_i = v_i \times T/n + \epsilon_i$, avec $\epsilon_i << 1/n$ (pour n grand). Finalement, en notant d la distance parcourue total (entre les instants 0 et T), on obtient

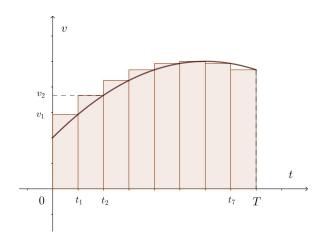
$$d = d_1 + d_2 + \ldots + d_n \simeq \widetilde{d}(n)$$
,

οù

$$\widetilde{d}(n) = v_1 \times \frac{T}{n} + v_2 \times \frac{T}{n} + \ldots + v_n \times \frac{T}{n}$$
 (1)

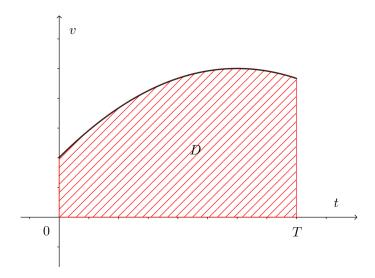
Lorsque n devient très grand, $\widetilde{d}(n)$ tend vers la valeur exacte d.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○



La distance parcourue totale approchée $\widetilde{d}(n)$ obtenue en (1) est la somme des aires des rectangles (de largeur T/n) apparaissant sur le dessin.

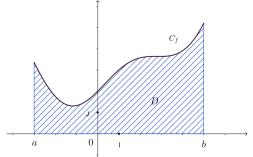
Lorsque n devient grand, cette somme d'aires tend vers l'aire sous la courbe représentative de v. La distance parcourue exacte d est donc égale à l'aire sous la courbe représentative de v.



1.2 Intégrale d'une fonction $f:[a,b]\to\mathbb{R}$

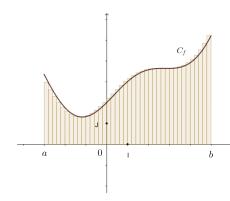
a) Cas d'une fonction à valeurs positives. Notons C_f la courbe représentative, dans un repère orthonormé (O, OI, OJ) du plan, d'une fonction $f: [a, b] \to \mathbb{R}$ ne prenant que des valeurs positives. L'intégrale de f entre a et b est définie comme l'aire du domaine situé entre l'axe des abscisses et C_f . Cette intégrale est notée

prenant que des valeurs positives. L'intégrale de
$$f$$
 entre a et b est définie com l'aire du domaine situé entre l'axe des abscisses et C_f . Cette intégrale est noté $\int_a^b f(x) \, dx$, ou simplement $\int_a^b f$. Autres notations possibles : $\int_{[a,b]} f(x) \, dx$, $\int_{[a,b]} f$.



Remarque. Supposons la fonction f continue. Comme remarqué en 1.1,

l'aire qui définit $\int_a^b f$ peut être approchée par une somme d'aires de rectangles, obtenus en divisant [a,b] en n sous intervalles $[a_{i-1},a_i]$ de longueur $\frac{b-a}{n}$, avec $a_i=a+\frac{i(b-a)}{n}$, et en considérant pour chaque i le rectangle de base $[a_{i-1},a_i]$ et de hauteur $f_i:=f(a_i)$.



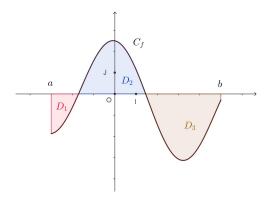
L'intégrale $\int_{a}^{b} f$ est ainsi approchée par la somme

$$I_n(f;a,b) = \frac{b-a}{n}(f(a_1)+f(a_2)+\ldots+f(a_n)) = \frac{b-a}{n}\sum_{i=1}^n f(a+i(b-a)/n).$$

Lorsque *n* tend vers $+\infty$, $I_n(f; a, b)$ tend vers $\int_a^b f$.

b) Dans le cas d'une fonction $f:[a,b]\to\mathbb{R}$ pouvant prendre des valeurs négatives, on adopte la convention suivante pour définir l'intégrale $\int_a^b f:$ l'aire d'un domaine situé au-dessus de l'axe des abscisses est comptée positivement; l'aire d'un domaine situé au-dessous de l'axe des abscisses est comptée négativement. Par exemple, pour la fonction f représentée ci-dessous, on a :

$$\int_{a}^{b} f(x) dx = -Aire(D_1) + Aire(D_2) - Aire(D_3)$$



Comme dans le cas des fonctions à valeurs positives, si f est continue, $\int_a^b f$ est la limite lorsque n tend vers $+\infty$ de $I_n(f;a,b)$, où

$$I_n(f; a, b) = \frac{b-a}{n} \sum_{i=1}^n f(a+i(b-a)/n).$$

Les sommes $I_n(f; a, b)$ sont appelées sommes de Riemann pour l'intégrale $\int_a^b f$.

Remarque. Si a = b, l'intégrale est nulle : $\int_{a}^{a} f = 0$.

c) Exemples.

i) Dans le cas où f est une fonction constante : f(x) = k pour tout $x \in [a, b]$,

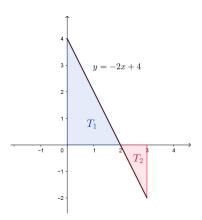
$$\int_a^b f(x) dx = k(b-a).$$

ii) Considérons la fonction $g:[0,3] \to \mathbb{R}$ définie par g(x) = -2x + 4. On a

$$\int_{0}^{3} g(x) dx = Aire(T_{1}) - Aire(T_{2})$$

$$= \frac{2 \times 4}{2} - \frac{1 \times 2}{2}$$

$$= 4 - 1 = 3.$$



2021-22

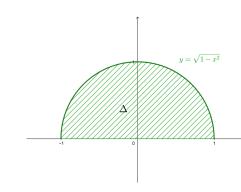
iii) Considérons la fonction $h: [-1,1] \to \mathbb{R}$ définie par $h(x) = \sqrt{1-x^2}$. Si le point M de coordonnés (x,y) appartient à la courbe représentative de h, alors

$$x^{2} + y^{2} = x^{2} + \sqrt{1 - x^{2}}^{2} = x^{2} + (1 - x^{2}) = 1$$
 et $y \ge 0$.

En fait la courbe représentative de h est le demi-cercle supérieur de centre O et de rayon 1.

 $\int_{-1}^{1} \sqrt{1-x^2} \, dx$ est donc l'aire du domaine Δ , qui est un demi-disque :

$$\int_{-1}^{1} \sqrt{1-x^2} \, dx = \operatorname{Aire}(\Delta) = \frac{\pi}{2} \, .$$



d) Valeur moyenne d'une fonction sur un intervalle [a,b]. Soit $f:[a,b] \to \mathbb{R}$ (avec a < b). La valeur moyenne de la fonction f sur l'intervalle [a,b] est définie par

$$VM(f; a, b) = \frac{1}{b-a} \int_{[a,b]} f(x) dx$$

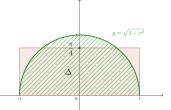
Remarque. Si VM(f, a, b) = m, alors $\int_{[a,b]} f(x) dx = \int_{[a,b]} m dx$.

Exemples. Reprenons les exemples ii) et iii) de c).

- La valeur moyenne sur [0,3] de la fonction $g: x \mapsto -2x + 4$ est $VM(g;0,3) = \frac{1}{3} \int_0^3 g = \frac{3}{3} = 1.$
- La valeur moyenne sur [-1,1] de la fonction $h: x \mapsto \sqrt{1-x^2}$ est

$$VM(h;-1,1) = \frac{1}{2} \int_{-1}^{1} h = \frac{\pi}{4}.$$

Ci-contre, l'aire du domaine hachuré est égale à l'aire du rectangle.

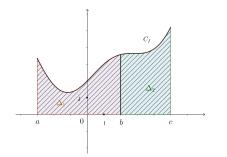


1.3 Premières propriétés

a) Relation de Chasles. Soit $f:[a,c] \to \mathbb{R}$ (continue). Pour tout $b \in [a,c]$,

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

Dans le cas des fonctions à valeurs positives, cette relation se déduit facilement de la définition de l'intégrale comme une aire :



$$\int_{a}^{c} f = \text{Aire de la partie hachur\'ee}$$

$$= \text{Aire}(\Delta_{1}) + \text{Aire}(\Delta_{2})$$

$$= \int_{a}^{b} f + \int_{b}^{c} f$$

Pour le moment, nous n'avons défini $\int_a^b f$ que dans le cas où $a \le b$. On va étendre la définition de la manière suivante: :

Soit I un intervalle de $\mathbb R$ et soit $f:I\to\mathbb R$ continue. Pour $a,b\in I$ avec a>b, on pose

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx = -\int_{[b,a]} f.$$

Avec la convention ci-dessus, la relation de Chasles se généralise ainsi.

Soit I un intervalle de \mathbb{R} et soit $f:I\to\mathbb{R}$ continue. Pour tous $a,b,c\in I$,

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

b) Comparaison. Soit $f:[a,b]\to\mathbb{R}$ continue. Si f ne prend que des valeurs positives, alors $\int_{[a,b]} f(x)\,dx\geq 0$.

Cette propriété est une conséquence évidente de la définition de l'intégrale d'une fonction positive qu'on a donnée.

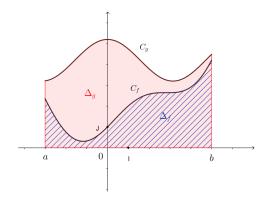
Attention, l'implication $f \ge 0 \Longrightarrow \int_a^b f(x) dx \ge 0$ n'est valide que si $a \le b$.

Plus généralement, on a :

Soient
$$f,g:[a,b]\to\mathbb{R}$$
 continues. Si $\forall x\in[a,b]\,,\ f(x)\leq g(x),$ alors
$$\int_{[a,b]}f(x)\,dx\leq\int_{[a,b]}g(x)\,dx\;.$$

Dans le cas où f et g sont à valeurs positives, cette propriété est une conséquence immédiate de la définition de l'intégrale.

4□ > 4□ > 4 = > 4 = > = 90



Si $f \leq g$, la courbe représentative de f est sous la courbe représentative de g, et $\Delta_f \subset \Delta_g$. On a donc $\mathrm{Aire}(\Delta_f) \leq \mathrm{Aire}(\Delta_g)$, c'est-à-dire $\int_{[a,b]} f \leq \int_{[a,b]} g$.

Comme précédemment, l'implication $f \leq g \Longrightarrow \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$ n'est valide que si a < b.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

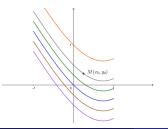
2 Primitives d'une fonction

2.1 Définition

On considère une fonction $f: I \to \mathbb{R}$, où I est un intervalle de \mathbb{R} . Une primitive de f est une fonction $F: I \to \mathbb{R}$ dérivable dont la dérivée est égale à f:

F est une primitive de $f \iff F' = f$.

Propriété. Soit $f: I \to \mathbb{R}$, une fonction définie sur un intervalle I, admettant une primitive F. Les primitives de f sont les fonctions F+c où $c \in \mathbb{R}$, c'est-à-dire les fonctions obtenues en ajoutant une constante à F. De plus, pour tout couple $(x_0, y_0) \in I \times \mathbb{R}$, il existe une unique primitive de f prenant en x_0 la valeur y_0 .



Ci-contre sont représentées les courbes représentatives de primitives sur] -1, 1[de $f:x\mapsto x-\cos(x)$. Tout point M d'abscisse dans] -1, 1[appartient à la courbe représentative d'une (unique) primitive de f.

Remarque. Certaines fonctions définies sur un intervalle I n'admettent pas de primitive sur I. C'est le cas par exemple de la fonction $u:]-1, 1[\to \mathbb{R}$ définie par $u(x) = \begin{cases} 0 & \text{si } x \in]-1, 0[\\ 1 & \text{si } x \in [0, 1[\end{cases}$. Pour une fonction définie sur un intervalle I, on a donc deux situations possibles :

- soit f n'a aucune primitive sur I ;
- soit *f* possède une infinité de primitives sur *l*, la différence entre deux primitives quelconques étant une fonction constante sur *l*.

Nous verrons dans la partie 3 les deux résultats fondamentaux suivants.

- Toute fonction continue sur un intervalle / possède des primitives sur /.
- Si f est continue sur l'intervalle [a, b] et F est une primitive de f sur [a, b], alors

$$\int_{a}^{b} f(x) dx = [F]_{a}^{b} \stackrel{def}{=} F(b) - F(a).$$

2.2 Tableau de primitives usuelles

Nom de la fonction f	Intervalle	Expression	Primitive <i>F</i>
Constante	\mathbb{R}	f(x) = a	F(x) = ax + C
Affine	\mathbb{R}	f(x) = ax + b	$F(x) = \frac{1}{2}ax^2 + bx + C$
Puissance d'exposant	$\mathbb{R} \ (n \geq 0)$		n+1
$n\;(n\in\mathbb{Z}\;,\;n eq-1)$	\mathbb{R}_+^* ou	$f(x)=x^n$	$F(x) = \frac{x^{n+1}}{n+1} + C$
	\mathbb{R}_{-}^{*} $(n < 0)$		" 1
Inverse	\mathbb{R}^*_+ \mathbb{R}^* \mathbb{R}^*_+ ou \mathbb{R}^*	f(x) = 1/x	$F(x) = \ln(x) + C$ $F(x) = \ln(-x) + C$ $F(x) = \ln(x) + C$
Puissance d'exposant $\alpha \ (\alpha \in \mathbb{R} \setminus \{-1\})$	$]0,+\infty[$	$f(x) = x^{\alpha}$	$F(x) = \frac{x^{\alpha+1}}{\alpha+1}$

Nom de la fonction f	Intervalle	Expression	Primitive <i>F</i>
	110	(() Y	F() X + C
Exponentielle	$\mid \mathbb{R}$	$f(x) = e^{x}$	$F(x) = e^x + C$
	\mathbb{R}	$f(x) = e^x$ $f(x) = e^{ax}$	$F(x) = e^{x} + C$ $F(x) = \frac{1}{2}e^{ax} + C$
		$(a \neq 0)$	a
	_		-()
Cosinus	\mathbb{R}	$f(x) = \cos x$	$F(x) = \sin x + C$
Sinus	\mathbb{R}	$f(x) = \sin x$	$F(x) = -\cos x + C$
	\mathbb{R}	$f(x) = \frac{1}{1+x^2}$	$F(x) = \arctan(x) + C$
] - 1,1[$f(x) = \frac{1}{\sqrt{1 - x^2}}$	$F(x) = \arcsin(x) + C$

Remarque. Les primitives sur] -1,1[de la fonction $x\mapsto \frac{1}{\sqrt{1-x^2}}$ prennent aussi la forme $-\arccos + C$, avec C constante réelle.

22 / 26

2.3 Propriétés

Les règles de calcul des dérivées ont pour conséquence les propriétés suivantes.

- Si F est une primitive de f, alors pour toute constante réelle λ , λF est une primitive de λf .
- Si F est une primitive de f et G est une primitive de g, alors F + G est une primitive de f + g.
- Soient u une fonction définie sur un intervalle I, supposée dérivable et à valeurs dans un intervalle J, et soit F une fonction définie et dérivable sur J. Alors la fonction $F \circ u$ est une primitive sur I de la fonction $(F' \circ u)u' : x \mapsto F'(u(x))u'(x)$.

En particulier :

- $x \mapsto e^{u(x)}$ est une primitive de $x \mapsto u'(x)e^{u(x)}$.
- $x \mapsto \ln(|u(x)|)$ est une primitive de $x \mapsto \frac{u'(x)}{u(x)}$.
- $x \mapsto \frac{u(x)^{\alpha+1}}{\alpha+1}$ est une primitive de $x \mapsto u'(x)u(x)^{\alpha}$.

- $x \mapsto \sin(u(x))$ est une primitive de $x \mapsto u'(x)\cos(u(x))$.
- $x \mapsto -\cos(u(x))$ est une primitive de $x \mapsto u'(x)\sin(u(x))$.

Exemples.

- Primitives (sur \mathbb{R}) de $x \mapsto \frac{x^2}{2} 3x + 2$: ce sont les fonctions $x \mapsto \frac{x^3}{6} \frac{3x^2}{2} + 2x + C$, avec C constante réelle.
- Primitives sur $]0, +\infty[$ de la fonction $f: x \mapsto \frac{x^2 2x + 1}{x}$. On a

$$f(x) = x - 2 + \frac{1}{x}.$$

Les primitives de f sont les fonctions $x \mapsto \frac{x^2}{2} - 2x + \ln(x) + C$.

• Primitives sur $\mathbb R$ de la fonction $g: x \mapsto \frac{5x}{x^2+1}$. On a

$$g(x) = \frac{5}{2} \cdot \frac{2x}{x^2 + 1} = \frac{5}{2} \cdot \frac{u'(x)}{u(x)}, \text{ où } u(x) = x^2 + 1. \text{ Les primitives de } g \text{ sur } \mathbb{R}$$
 sont les fonctions $x \mapsto \frac{5}{2} \ln(x^2 + 1) + C$

• Primitives (sur \mathbb{R}) de la fonction $h: x \mapsto \frac{1}{1+4x^2}$. On a

$$h(x) = \frac{1}{1 + (2x)^2} = \frac{1}{2} \cdot \frac{2}{1 + (2x)^2} = \frac{1}{2} \cdot \frac{u'(x)}{1 + u(x)^2} = \frac{1}{2} u'(x) \arctan'(u(x)),$$

avec u(x) = 2x. Les primitives de h sur \mathbb{R} sont les fonctions $x \mapsto \frac{1}{2} \arctan(2x) + C$.

• Primitives sur \mathbb{R} de la fonction $k: x \mapsto (\cos x)e^{-\sin x}$. On a

$$(\cos x)e^{-\sin x} = -u'(x)e^{u(x)}$$
, avec $u(x) = -\sin x$.

Donc les primitives de k sur \mathbb{R} sont les fonctions $x \mapsto -e^{-\sin x} + C$.

• Soit I un intervalle de $\mathbb R$ ne contenant ni -1, ni 0, ni 1. On considère la fonction ℓ définie sur I par $\ell(x) = \frac{3x^2 - 1}{(x^3 - x)^4}$. On a

$$\ell(x) = \frac{u'(x)}{u(x)^4} = u'(x)u(x)^{-4}$$
, avec $u(x) = x^3 - x$

Les primitives de ℓ sur I sont les fonctions

$$x \mapsto \frac{u(x)^{-4+1}}{-4+1} + C = -\frac{u(x)^{-3}}{3} + C$$

c'est-à-dire les fonctions $x \mapsto -\frac{1}{3(x^3 - x)^3} + C$.