SUITES DE NOMBRES COMPLEXES.

1 Définitions.

Définition 1. Soit $I \subset \mathbb{N}$ une partie infinie de \mathbb{N} . Une suite complexe, d'ensemble d'indices I, est une **application** z, de I dans \mathbb{C} , notée $(z_n)_n$.

Remarque. Comme $z_n = \text{Re}z_n + i\text{Im}z_n$, on associe ainsi à une suite à valeurs complexes $(z_n)_n$, deux suites réelles $(\text{Re}\,z_n)_n$ et $(\text{Im}\,z_n)_n$.

Soit $(z_n)_n$ une suite complexe. On appelle :

- 1. partie réelle de $(z_n)_n$ la suite réelle de terme général $Re(z_n)$;
- 2. partie imaginaire de $(z_n)_n$ la suite réelle de terme général $\text{Im}(z_n)$;
- 3. conjuguée de suite $(z_n)_n$ la suite complexe de terme général $\overline{z_n}$;
- 4. $module de suite <math>(z_n)_n$ la suite réelle de terme général $|z_n|$.

On retrouve les notions de suites constantes, stationnaires et d'opérations sur les suites, ainsi que les définitions de suites aithmétiques, géométriques, arithmético-géométriques.

Suites (u_n) telles que $u_{n+2} = au_{n+1} + bu_n$, $a \in \mathbb{C}$, $b \in \mathbb{C}^*$.

La technique est la même que celle pour les suites réelles (voir chapitre 1). Si l'équation $x^2 - ax - b = 0$ admet deux racines complexes distinctes r, s, alors les suites $(u_n)_n$ vérifiant la relation de récurrence $u_{n+2} = au_{n+1} + bu_n$, sont de la forme $(\alpha r^n + \beta s^n)_n$, pour deux complexes α, β .

On retrouve les notions de sous-suites ou suite-extraite.

2 Suites complexes bornées.

On perd les notions de monotonie, de suite majorée et de suite minorée. Cependant, on préserve la notion de suite bornée.

Définition 2. La suite complexe $(z_n)_n$ est bornée s'il existe $M \in \mathbb{R}$ tel que $|z_n| \leq M$ pour tout $n \in \mathbb{N}$.

Proposition 1. La suite complexe $(z_n)_n$ est bornée si et seulement si ses parties réelles et imaginaires sont des suites réelles bornées.

3 Convergence des suites complexes.

Définition 3. La suite complexe $(z_n)_n$ tend vers $l \in \mathbb{C}$ si $\lim_{n \to +\infty} |z_n - l| = 0$, autrement dit

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N} \quad n \geqslant n_{\epsilon} \Longrightarrow |z_n - l| \leqslant \epsilon.$$

Proposition-Définition 1. Si un tel complexe l existe, il est unique : on dit que l est la limite de la suite $(z_n)_n$ et on note $l = \lim_{n \to +\infty} z_n$ ou $z_n \to l$.

On dit alors que la suite (z_n) converge (vers l). Sinon, on dit qu'elle diverge.

ATTENTION Pour les suites complexes, il n'y a pas de notion de limite infinie, tout au plus peut-on dire $|z_n| \to +\infty$.

On retrouve la notion de valeur d'adhérence et la propriété que si (u_n) , suite complexe, possède une limite, alors toute suite extraite de (u_n) a la même limite.

On retrouve les opérations algébriques :

Proposition 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites complexes convergentes vers l et l' respectivement :

- 1. leur somme est une suite convergente dont la limite est la somme des limites l+l',
- 2. leur produit est une suite convergente de limite le produit ll',
- 3. soit $\lambda \in \mathbb{R}$, la suite $\lambda(u_n)_{n \in \mathbb{N}}$ est convergente de limite λl ,
- 4. on suppose que tous les v_n sont non nuls et que l' est non nulle, alors la suite quotient de $(u_n)_{n\in\mathbb{N}}$ par $(v_n)_{n\in\mathbb{N}}$ est convergente de limite l/l'.

Nous avons associé à une suite complexe (u_n) les deux suites réelles $(\text{Re}(u_n))$ et $(\text{Im}(u_n))$. La relation entre la limite d'une suite complexe et les limites de ses parties réelle et imaginaire est donnée par la proposition suivante :

Proposition 3. Soit (u_n) une suite complexe. Alors (u_n) est convergente si et seulement si les suites $(Re(u_n))$ et $(Im(u_n))$ sont convergentes. De plus

$$\lim_{n \to +\infty} Re(u_n) = Re(\lim_{n \to +\infty} u_n) \quad et \quad \lim_{n \to +\infty} Im(u_n) = Im(\lim_{n \to +\infty} u_n).$$

Proposition 4. Soit (z_n) une suite complexe et $l \in \mathbb{C}$. Alors

- 1. $z_n \to 0 \iff |z_n| \to 0$.
- 2. $z_n \to l \Longrightarrow |z_n| \to |l|$; la réciproque est fausse dès que $l \neq 0$.
- 3. $z_n \to l \iff \bar{z_n} \to \bar{l}$

Proposition 5. Toute suite complexe convergente est bornée.

la réciproque est fausse : il existe des suites bornées qui divergent.

3.1 Théorème de Bolzano-Weierstrass, version complexe

Théorème 6. Toute suite complexe bornée admet une sous-suite convergente.

Théorème 7. Toute suite complexe bornée admet une sous-suite convergente.

Soit
$$(z_n)$$
, $z_n = e^{in\theta} = (e^{i\theta})^n = z_1^n$, $\theta \in \mathbb{R}$.

On a $|z_n| = 1$.

Donc d'après le théorème de Weierstrass, (z_n) admet une sous-suite convergente.

- 1. **1ier cas** Il existe $q \in \mathbb{N}^*$ tel que $e^{iq\theta} = 1$ autrement dit, $e^{i\theta}$ est racine qième de l'unité. Soient $\alpha_p = e^{2i\pi p/q}$, p = 0, ..., q 1, ce sont les q racines qième de l'unité. Soit $z_1 = \alpha_1$, $\{z_n\} = \{\alpha_p, p = 0, ..., q 1\}$ et α_p est limite de la suite extraite (z_{nq+p}) .
- 2. **2ième cas** $(e^{i\theta})^q \neq 1$ pour tout $q \in \mathbb{N}^*$, alors tout point du cercle unité est valeur d'adhérence de (z_n) . Indic. $2\pi\mathbb{Z} + \theta\mathbb{Z}$ est dense dans \mathbb{R} .

4 Complément : les suites homographiques.

On appelle suite homographique une suite complexe (u_n) définie par itération $u_{n+1} = f(u_n)$ avec f une homographie, c'est-à-dire une fonction définie de $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ dans $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ par

$$f(z) = \frac{az+b}{cz+d} \quad (*), \quad a,b,c,d \in \mathbb{C}, \quad ad-bc \neq 0$$

1. Si c=0, f est définie sur \mathbb{C} par (*) et on pose $f(\infty)=\infty$;

2. si $c \neq 0$, f est définie sur $\mathbb{C} \setminus \{-d/c\}$ par (*) et on pose $f(-d/c) = \infty$, $f(\infty) = a/c$

Cette étude est en complément. Je vous renvoie aux diapos de ce chapitre ou au livre, mis en référence, J.-P. Marco, L. Lazzarini; Mathématiques L1- Cours complet avec 1000 tests et exercices corrigés. si vous êtes intéréssés.